

 AGDS - Adventure Game Development System

 OVERVIEW
 ========

AGDS was developed as a fast means to implement adventure games using a
machine portable language. It outwardly resembles the programming
language "C".

AGDS is a specialized set of commands which help manipulate objects on a
3-D plane. Before looking at the commands, it is important to understand
some basic terminology.

ROOM -- we divide our games into "rooms"--locations based upon a map. For
instance, if a game is inside a house, room 1 might be the living room,
room#2 the kitchen, etc. When the adventure moves outdoors, room #11 might
be the left side of a lake and room #12, the right side. The amount of
landscape in a room is controlled by the graphics of the room's picture.

PICTURE -- Usually, each ROOM has an associated picture. In some cases a
room has multiple pictures. In King's Quest 2, Dracula's castle had numerous
rooms with two pictures; one with the room lit, and another mainly black
picture (indicating the lights were out). Donald uses three pictures within
the banner page room, a logo picture, a title picture and the credits screen.

OBJECT -- OBJECTs may be either ANIMATED OBJECTS or INVENTORY OBJECTS, the
difference being whether thye appear graphically on screen or exist only to be
carried. Example: in Quest2 there were two objects, the mallet and the
bracelet. King Graham sees a tree in the woods that contains a mallet. He
can say "GET MALLET" and the mallet goes into his inventory. With the mallet
in inventory, he can say "SHOW MALLET" and a window opens, displaying the
mallet. The bracelet is seen lying on the beach. When he says "GET
BRACELET" it disappears off the screen. Once in inventory, it can be "look"ed
at just like the mallet. Because the bracelet appears on screen during the
game, it is an "animated object." Since the mallet exists only to be taken
into inventory, it is called an "inventory object." "Animated" objects can
be "DRAWN" on the screen and animated. "Inventory" OBJECTs can only be held
in inventory. Both may be "SHOWn" in a pop-up screen window, once they are in
inventory.

CELLS -- AGDS works like traditional cartoon animation. If Little
Red Riding Hood is seen stooping to pick flowers, she must be drawn as a
series of CELLS showing her going from standing up to bending over. At
NORMAL speed, AGDS cells are cycled at the rate of 9 per second. If Riding
Hood is 20 pixels by 20 pixels, each CELL uses about 200 bytes of memory.

Obviously, all CELLS to be displayed must be in memory when the animation
begins. A collection of CELLS that form an animation sequence is called a
LOOP. Each cell contains the specific bit-maps AGDS displays on-screen.

LOOPS -- Each loop contains from 1 to 10 CELLS. Little Red Riding Hood
picking a flower is a LOOP, Red skipping is another LOOP, Red walking without
skipping is yet another.

VIEWS -- Views consist of from 1 to 4 LOOPS. An animated object may have a
view consisting of 4 LOOPS: right, left, front, and back. You can only load
VIEWS, not just a LOOP. Often, memory constraints will force a character to
have only 2 loops, a right and a left. AGDS determines which LOOP is
displayed, based on the direction of an object. Only the four directions
[r, l, f, b] are supported.

LOGICS -- Each room has LOGIC associated with it. This LOGIC is the
procedural set of instructions that gets executed describing game play. AGDS
always automatically loads, and executes ROOM 0. From there, the logic
programmer must handle everything.

ROOM #0 contains the LOGICS that are common to the entire game, low level
functions like "SAVE GAME," "HELP," etc. Instead of coding instructions to
handle saving the game into every room, put it in room 0.

DYNAMIC LOGICS are used for the same reason. They are rooms that have no
picture, but process commands that occur in multiple ROOMs. Every ROOM that
needs swimming can load a LGC.SWIM which deals with commands like SWIM, and
standing ego up when he is no longer in water. It would be a nuisance and a
waste of disk space to code this redundantly for each ROOM with water in it.
If it were in ROOM #0 it would occupy ram even in ROOMs without water.
Memory is valuable; anything that cuts down memory requirements is good!

LAST LOGICS are simply the last LOGICS executed. Here you handle things
like the player giving a command that the other logics don't recognize.
For instance, if the player asks the game to swim when there is no water in a
ROOM, no dynamic logic is loaded to deal with water. Somehow the player needs
to be told we don't understand what he said. LAST LOGICs handles all
code trying to provide intelligent responses to input not dealt with by one
of the earlier-processed logics.

SOUNDS -- sound effects and music work just like PICTURES and OBJECTS, load
them, then call them.

 PRIORITIES
 ==========

AGDS pictures are composed of a picture screen, and a priority screen. The
picture is arranged as 160 by 168 pixels, numbered from 0-159, and 0-167.
Each pixel is one of 16 colors. Associated with each pixel is a "priority",
from 0 to 15. Priorities 4 to 15 determine the 3-D plane, 0 to 3 are
"control" priorities, with special meaning.

THREE-D PRIORITIES
Priority 4 is the lowest 3-D priority; any pixel on this priority will always
be in the background, and ego and all other objects appear "in front" of it.
All objects appear behind priority 15 pixels, unless the object is also a
priority 15.

Objects can only be one priority at a time. An object's priority is usually
determined by the Y coordinate of its baseline, according to the following
table:

 PRIORITY TABLE
 ==================

 Y-coord Priority

 0-47 4
 48-59 5
 60-71 6
 72-83 7
 84-95 8
 96-107 9
 108-119 10
 120-131 11
 132-143 12
 144-155 13
 156-167 14

Example: if EGO is at 50/75, he is at priority 7. He will show behind pixels
at priority 8 to 15 and in front of priorities 4 to 7.

If an object with priority 8 is drawn on a picture that also has priority 8,
the object appears in front. If it appears in front of another object with
the same priority, the object with the lower Y coordinate appears in front.

CONTROL PRIORITIES
These priorities apply only to pictures. Object may not be set to priorities

0 thru 3.

PRIORITY 0 -- called "Priority Zero." No pixel of an object's baseline may
land on a picture pixel of priority 0. It is used at the base of trees,
rocks, etc, to stop objects from passing thru them. However, objects set to
priority 15 appear to "float" over the entire picture, and thus do ignore
Priority 0.

PRIORITY 1 -- called "block." Nearly the same as priority 0, except objects
can pass over it, or not. The action "ignore.blocks()" allows objects to
cross priority 1. There is also an action "block(x,y,x,y)" that can be
established through the logics; it works exactly the same way, but can be
defined, redefined, and discarded on the fly.

PRIORITY 2 -- called "special." When any pixel of EGO's baseline coincides
with a pixel of priority 2, the "hit.special" global flag is set. This
priority is used when you need to know if EGO has touched a location, and a
position block won't work. Used to know if ego has walked into a chasm.

PRIORITY 3 -- called "water." When all pixels of EGO's baseline are on
priority 3, the "on.water" global flag is set. This priority is often used
for water, so EGO can swim, or to keep a character within a boundary.

COMMENTS ON PRIORITIES:
Control pixels still have a visual priority from 4 to 15. To accomplish this,
AGDS scans directly down the control priority until it finds some
"non-control" priority.

Some objects step by more than 1. This means that their baseline when moving
along the Y coordinate can step over priority 0. To get around this, in
Quest 2 we put vertical bars of priority 0 inside trees and rocks etc.

Priority 15 objects ignore all control priorities in the picture. For
instance, they pass over priority 0 as if it weren't there.

See the file AGI.DOC for a complete discussion on each individual function.

 WORKING WITH LOGIC FILES
 ========================

CG -- the game compiler.
This is the most used. Assuming you use BRIEF to edit the source code files,
call the compile macro (often assigned to the F9 key). It saves your file,
calls the CG game compiler, routes CG's output to your LGC subdirectory, and
if errors are found, displays them in the current window.

In addition, 'cg' can now be run properly from BRIEF.

 * It generates output in the filename format which the
 interpreter and utilities want. Thus:
 cg rm0
 puts its output in 'rm.0'.

 * You can reroute output with the '-o' switch:
 cg rm0 -o..\lgc
 puts its output in ..\lgc\rm.0.

 * It takes wildcards in filenames. You can compile the
 world with:
 cg *.cg

 * You can pass 'cg' its parameters from a file:
 cg @file
 gets its command line from the file 'file'. This is used in
 the 'make' and 'makeuse' batch files.

MAKE
'make' uses the program 'cgupd' to create a list of all files for which the
source code date/time is more recent than the object code date/time. It
feeds this list to 'cg' for compilation. Thus, you can make modifications
to lots of files, then type 'make' to recompile all of them.

MAKEUSE
'Makeuse' is similar to make, but uses 'find' to generate a list of all
files containing a given string. If, for example, you change the number
corresponding to a given flag, you can update everything by typing:
 makeuse flag_name

MACROS
The BRIEF macros "allfiles.m" and "modify.m" allow you to modify all of
your source files at once. To use them, edit the file "\brief\macro\modify.m"
to do whatever you want done to your files. Compile it (use F9) until it is

correct, and automatically loaded. Then press F10 (BRIEF's "command"), and
enter "allfiles."

"allfiles" asks for a "modification criterion," which will probably be
"rm*.cg". It must be a regular BRIEF search string. Allfiles then calls
"ls" to read the current directory, searches for files matching the
"modification criterion," reads each file into BRIEF, calls the macro
"modify," then saves the file. After all files are done, exit BRIEF and do
a "cg" with the same "modification criterion." There should be no need to
modify "allfiles"; it is just a general purpose driver that calls "modify."

For example, to modify the action names, set up "modify" with the appropriate
"replace/translate" commands, then invoke "allfiles" with a criterion of
{gamedefs}|{*.cg}.

 THE OBJECT EDITOR
 =================

Lower-Case command keys:
 l set screen block upper-Left corner position.
 r set screen block lower-Right corner position.
 e Edit cel (prompts for cel #).
 s Save cel (prompts for cel #).
 g Get loop file from DOS (prompts for filename).
 p Put loop file to DOS (prompts for filename).
 m Mirror the current cel.
 x set X-step for current loop (prompts for value).
 y set Y-step for current loop (prompts for value).
 t set step-Time for current loop (prompts for value).
 c set current Color (prompts for color code).
 n display Next cel at upper-left corner of current block.
 h Hack current loop's cel count (described below).

Upper-Case command keys:
 I set Insert mode (described below).
 D set Delete mode (described below).
 N set Normal mode (described below).
 S set Slow speed mode (described below).
 M set Med. speed mode (described below).
 F set Fast speed mode (described below).
 Z set Zip. speed mode (described below).
 C Clear screen & re-display colorbar, etc.
 Q Quit edit session & return to DOS.
 B Block fill (described below).

Cursor control keys:
 up arrow Up.
 right arrow Right.
 down arrow Down.
 left arrow Left.
 Pg Up Up-Right.
 Pg Dn Down-Right.
 End Down-Left.
 Home Up-Left.

Insert, Delete, & Normal modes:
 In Insert or Delete modes, a color dot is written at the current cursor
position (current color for insert, black for delete) each time the cursor is
moved, at each position the cursor crosses. The dot is written at the current
cursor position BEFORE moving to the next, NOT at the new position. Normal
mode does not alter the screen on cursor movement.

 ins Insert current color dot at current cursor position.
 del Delete dot at current cursor position.

Speed modes:
 Each cursor movement key will move the cursor in the direction
indicated for the number of positions indicated by the current speed mode
selected. Slow speed cuases the cursor to move one dot for each cursor
movement key. Medium, Fast and Zip move the cursor 2, 3, and 4 dots per cursor
movement key, respectively.

 NOTE: In Insert or Delete modes, the screen alteration functions will
alter all positions passed over by the cursor in its movement, not just the
destination position.

Block fill command:
 Fills the area of the screen described by the last Set upper-Left,
Set lower-Right commands with the current color.

Hack cel count command:
 Will delete the specified cel and all higher-numbered cels from the
current loop (prompts for cel number).

 MAKING VIEWS
 ============

"makeview" is a utility that creates views out of loops. It reads
a text file called VIEWS in the \loops subdirectory for its instructions.
A driver batch file, "mv.bat" is used to automatically call makeview and
update the \view subdirectory.

The VIEWS file must contain an entry for each view, including some (or all)
of the following information, in the following format:
 view 3, skip 3: 3r 3l 3f 3b

 skip 3 means this object was drawn with a background color of 3
 (default, black 0).
 r,l,f,b gives the number & description of the loop

To make, or fix, a view:

1. Edit the file "VIEWS," in the loops subdiretory.

2. type:
 mv ## [##-##] (where ## is the view number to be made; viewnums can be
 single, or ranges separated by a "-")

 THE PICTURE EDITOR
 ==================

CURSOR MOVEMENT:
 1 pixel arrow keys
 diagonally 1 pixel Fn-arrow keys
 10 pixels ctrl-PgUp,PgDn,left,right

PICTURE EDITING:
 Space forward 1 instruction
 Backspace back up 1 instruction
 Tab forward 1 picture code
 Shift-tab backward 1 picture code
 Del delete previous step
 B goto beginning of picture
 E goto end of picture
 PRIORITY & COLOR NUMBERS:
 H start horizontal line 0 black
 V start vertical line 1 blue
 D start diagonal line 2 green
 C start curved line 3 cyan
 4 red
 F start color fill 5 magenta
 Fn1 set color 6 brown
 Fn2 clear color 7 white
 Fn3 set priority 8 dark grey
 Fn4 clear priority 9 bright blue
 Fn5 toggle rubberband mode 10 bright green
 Fn6 toggle status display 11 bright cyan
 Fn7 toggle RGB/composite mode 12 bright red
 Fn9 show graphics screen 13 bright magenta
 Fn10 show priority screen 14 yellow
 ESC to drawing screen from Fn9/Fn10 15 bright white
 Shift-Fn1 save screen image as bitmap

 G goto Nth instruction (tab N times)
 L get picture file from disk
 S save picture file from disk
 W wipe out present picture (clear)
 < delete from beginning to current location
 > delete to end from current location
 A appends a picture to end of present picture
 Q quit (confirm?)

ON DRAWING SCREEN:
 purple lines priority lines
 white lines priority & color lines
 green lines color only

 THE SOUND EDITOR
 ================

 The four vertical bands represent voice1, voice2, voice3 and the
noise channel respectively. Each horizontal bar is one frame of the
interpreter (or 1/9-second) in length. The beginning of the sound is
at the top of the screen, the end is at the brown line. Voice3 can be
linked to the noise channel, or not.

All keys below are non-caps sensitive. Use the number keypad for
best results: the most commonly used keys are on it. Editor must be
booted directly from the floppy with DOS 2.10.

 DISK ACCESS
 G get a file from disk
 P put a file on disk
 Esc cancel current request

 CURSOR KEYS
 - back a frame
 + forward a frame
 Home back a voice
 PgUp forward a voice
 Del/. delete a frame
 Ins insert a frame (of silence)
 Enter copy current frame & insert

 PITCH CONTROL
 Up/Down adjust volume up/down
 Left/Right adjust pitch lower/higher
 L Lengthen current note
 S Shorten current note

 MISC. FUNCTIONS
 End play to the END of the sound
 PgDn toggle between: all voices, current voice, no voices
 R Repeat present sound continously
 C Couple voice3 to noise generator
 Q Quit

 MUSIC ROUTINES
 ==============

BIG PICTURE:
Name the source files:
 snd##.mt

(The extension refers to the compiling program, maketune.) After
entering the source code, use the "MT" batch file to compile it.
Use the form:
 mt ##

where ## is the number of the sound that matches the ## in the
snd##.mt filename. The batch file calls MASM to assemble the code,
LINK to link it, EXE2BIN to convert it, then MAKETUNE to convert it
to an adventure game file named snd.##. It may then be tested with
the PLAY program:
 PLAY snd.##

When the file is correct, enter:
 UPDATEM

which will clean the various junk files out of the music directory,
and transfer the snd.## files from the \music directory to the
..\snd directory.

 SOURCE CODE FORMAT
 ==================

INCLUDES
Files must start with:
 include pitches
 include tempo##

Files must end with:
 include musicend

Somewhere in the file must be the labels:
 voice1
 voice2
 voice3

whether the other voices are used or not.

PITCHES
Notes are specified by name and octave number, followed by a rhythm,
and an optional integer articulation. A middle B-flat quarter-note,
separated from the following note by a two-cycle space would be:
 bf3 q,2

Pitch range is from C0 to B5. Accidentals are specified by either
"f" or "s" before the octave number.

RHYTHMS
The "tempo" files contain the range of rhythms, generally from s for
sixteenth to w for whole notes. See them for details.

RESTS
Rests are specified by "rest" and a duration:
 rest q

VOLUME
Volume is specified by:
 atten ##

where ## is an integer from 0 to 14. Maximum volume = 0; minimum is
14. Volume remains set until a new atten is specified. Do NOT
follow an atten by a rest!

 TO MAKE A DIRECT I/O GAME DISK
 ==============================

1. edit the file "diskinfo" to describe every disk in the game. See the
"makedisk" subdirectory for example. This file allocates disk space for
whatever you will later write to disk.

2. Create a file called "vol0.drv" (and/or "vol1.drv" etc.) that describes
volume 0. It must contain, in order:
 volume 0 the name of the volume
 for rm, pic, etc the pathname to each subdirectory
 files list the name of every file to be included in the volume

3. Run "makedisk" batch file, with a formatted disk in drive a:.

TO UPDATE AN OLD DISK:
1. Don't run "makedisk" as it does everything all over, and perhaps you
only need to change one small part.

2. Call "mkvol," giving it as a parameter, the number of the volume to be
made. Example, to construct volume 0, type:
 MKVOL 0

3. After all volumes are made, call "mkdisk" with the following parameters:
 MKDISK all re-do everything
 p change interpreters only
 b change boot files only
 ao change aniobj and object tables only
 wt change words.tok only
 v01 change directories only
 0v change volume 0 only

 ERROR MESSAGES
 ==============

Error messages are now contained in a separate dynamic logic, which
must be on every disk. They appear in the format:
 error # : n

 1 can't find "where"
 2 object #n too large in set.view
 3 view not loaded for set.view
 4 object #n too large in set.loop
 5 loop #n too large in set.loop
 6 view not set
 7 object #n too large in set.cel
 8 cel #n too large in set.cel
 9 message #n not defined in print
10 too many logics in load.logics
11 too many pictures in load.pic
12 too many animated objects
13 object #n too large in animate.obj
14 object #n too large in get.obj
15 object #n too large in drop.obj
16 invalid action
17 out of memory by #n bytes
18 picture not loaded in draw.pic
19 object #n too large in draw
20 no view of object #n in draw
21 object #n too large in erase
22 cell size > save size for view #n
23 picture not loaded in discard
24 view not loaded in discard
25 too many views in add.to.pic
26 stack overflow
27 attempt to set memory mark when one is already set
28 start/stop update when obj not drawn

