Laura Bow Il
Programming Style Manual

Coding Preferences Of Brian K. Hughes

This is an atternpt at a programming style manual. [t is intended to provide the reader with a list
of my coding styles, and the DOs and DONTS of coding on Laura Bow [I. [t is not inteaded to be an
authorized representation of Sierra coding policies. While many of the rules listed in this document are
no more than the personal preferences of a demented lead programmer (yours truly), I hope that the
majority of this material will become ingrained in your programmer-self and carried on to your next
project. Obviously, 1'd like to see everyone adopt my coding style, but [am not the only lead
programmer here. Just as [like things my way, so another lead may like it differently. The best we can
hope for, therefore, is a union of styles; if we all code alike, it really doesa’t matter if it's my way or
someone else's.

Please keep in mind that the information in this document is not carved in stone (but only because
my printer has trouble feeding slabs of granite). If you have a serious objection to a concept herein, or
feel you have a more efficient way to achieve the desired result, feel free to contact me. [firmly believe
that one who is in a teaching capacity must spend roughly half his time learning as well.

R - R - 7R N R

PFAEAEBDLULUVLWULUNNNNNNNNNNNNOENNNN = ————
PUN~DWUN—~OBRWLN o
=)

= a
Son

o) A
oo

Contents

Module Organization
The Order of Things
Pracedures -
Public Entries & Externais
Overlay Modules
Object Organization
Room [nit
Pre-loading Resources
Setting the Region
Setting Up Ego
Initial Code Based on Previous Room
Super [nit
Setting Up Polygons
Setting Up the Cast
Setting Up Features
Miscellaneous Initial Code
Setting Script(s)
Dynamic Objects
A Word About Features
Annotation
Optimization
The Dreaded Doit
Pre-Loading Resources
Messaging
Indention
Tabs vs. Spaces
Ia If Blocks
In Properties Lists
In Complex Messages
In Arrays
Blank Lines
Examples
Naming Conventions
The Part at the End

page 3
page 3
page 3
page 4
page 4
page S
page S
puge 6
page 6
page 6
page 6
page 6
page 6
page 6
page 7
page 7
page 7
page 7
page 7
puge 8
page 9
page 10
page 10
page 11
page 11
page 12
page 12
page 12
page 12
page 12
page 13
page 13
page 14
page 14

1.0 Module Organization

Arranging the elements of your module in a particular order makes the code much easier to read
and maintain by others. Generally, grouping object by type is the easiest, although sometimes it is more
logical to group objects by subject. For example, an actor could be grouped with all the other actors, or
with his mover, sound, and script. Either way is acceptable.

Clearly mark your groups so that they can be found easily. A distinguishable comment before a
group of items is the easiest way to do this. [have a macro, called MakeBox, which will create a double-
lined box around a piece of text. [will be happy to provide this macro to anyone who wants to adopt its

style.

The following chart represents how 1 like to organize a file. You need not adhere to it strictly,
but [strongly recommend it. Items marked with a § are required for every module.

header comments
script #
includes
procedure list
public entry list
defines
locals
instance of LBRoom
procedures

&~ Actors & Props

sof Talkers & reluted objects

Views & PicViews
Features
Sound, Code, & Misc

1.2 Procedures

In the above list, you'll notice that 1 recommend procedures do not come before the instance of
room. The rational behind this is that the main object in the module (the room instance in room modules)
should be the first code encountered. Some modules may contain several long procedures. It is
inconvenient to one perusing the file to have to page-up and page-down through these procedures to see
what the main object looks like.

Be aware of your coworkers' procedures. If there is 2 procedure already written that may be
used again with little or no modification, it may be beneficial to break the procedure out of the module in
which it resides, put it into room O or other public module, and create an external reference define for it in
GAME.SH. ? s robwatp ?obh'g ?

|Header comments should include the name and purpose of the module, the author, the date last updated,
and a list of any classes defined in the module.

Any object that will be referenced outside the module in which it resides must be assigned a
public entry number in that module. As an example, an instance of room in a room module must be
assigned public entry number 0. This is how Game startRooni knows about the room2. Public objects are
referenced in other modules via the ScriptdD kemel call. ScriptiD takes as parameters the number of the
module in which our public object resides and the public entry number assigned to it, and returns an
address to that object. For example, given:

(scripté' 100)

(public
myActor 0
)

(instance myActor of Actor)
we can reference myActor from another module with (ScriptdD 100 0)

Ifryou will be referencing an object more than once, you should create a define for the Script/D
call. In the above example, we could save the object ID of myActor for use in several places, by creating
the following define:

(define xMyActor® (ScriptID 100 0)

Procedures may be referenced externally as well as objects. The process is the same for objects
and procedures, but our procedures will be referenced through extern statements in GAME.SH. These
work the same as the Script/D statement above, but generate a different PMachine op code.

L4 Overlay Modules

Overlay modules are modules that contain objects related to, but not always necessary for, a
room module. You should review the code situation very carefully before splitting code out into an
overlay module. Overlays are often difficult to manage, and can be very tricky as far as memory
management. By contrast, however, they are not as difficult to create as they seem. Overlays should be
considered if:

The total size of the source module is approaching 64K

There is a group of objects or large amount of code that is used only in a specific situation
The amount of hunk available when running the room is less than 5K

There is a group of objects or large amount of code that can be shared by other modules

o0 O® WOo WOn

Creating an overlay module is a relatively simple process. Refining it, however, may take some
time and will most certainly break the original module temporarily. To create an overlay module, do the
following:

2[f you are receiving a NOT AN OBJECT: $0 error when Gumw startRoom tries to add your room to the
regions list, check to see if you've forgotten the public entry for your instance of LBRoom.

3Refer to section 5.4 Defines. Globals, Flags. & Vars for more information on this syntax.

[
(o°°.h
oS* W
g
o

1

.

Create a new file with an appropriate name

Move the code to be split out into the new module

Create public entries in the original module for objects that must be referenced in the overlay
Create external reference defines in the overlay to point to the public entries in the original

module
Create public entries in the overlay for objects that must be referenced in the original module

Create extemnal reference defines in the original module to point to the public entries in the

overlay
§ Be sure that either the original module or the overlay itself removes the overlay from

memory when finished with it

O® O W= Ot

ot W=

The hardest part about creating overlay modules is getting the external referencing correct. NOT
AN OBJECT will generally mean that one of the two modules is trying to send a message to an object
that is no longer in that module. DISPATCH NUMBER TOO LARGE generally is caused by trying to
reference a public entry that is largér thun the last public entry for that module. For example, the error
will occur if (Script/D 100 3) is used in one module and script# 100 only contains pyblic entries 0, 1, and
2.

2.0 Object Organization

How you lay out your objects' code is nearly as important as how you lay out the module, in
terras of style. For most objects, this section is not important. But for a few objects such as rooms, these
guidelines are recommended.

2.1 Room /ait

The room is one of the most common objects in the game, and the room's init method is vne of
the most frequently referenced. It is fairly important, therefore, to keep the room's init method clean and
easily readable. One way in which this can be accomplished is to order your room's init code is the
following way:

Pre-loading Resources

Setting the region, if any

Setting up ego?

Initial code based on previous room
Super init:

Setting Up Polygons

Setting up the cast

Setting up features

9. Miscellaneous initial code

10. Setting script(s)

PSS s

4Ego must generally be inited before the (super init:), if the room is an instance of a subclass of Room
that handles walking ego in and out of rooms.

2.1.1 Pre-loading Resources

All views, pics, sounds, cursors, and fonts used in the module should be loaded here. This
serves two purposes: 1) to annotate which resources are being used (better than comments at the top of the
file), and 2) to prevent "disk hits” during the execution of a room, the theory being that if all the resources
are loaded the game should never require disk access until another room change.’

2.1.2 Setting the Regi

Setting the room to a region (or vice versa, depending upon how you choose to look at it) is
accomplished with the (self setRegions: regionModuleNuny) statement, where regionModuleNum will
usually be a define from GAME.SH.

2.1.3 Setting Up Ego

Setting up ego will normally consist of two messages, an init and a pormulizz. Additionally, ego
may positioned here or have alternate cyclers and movers set. Note that the game's startRoom method
will put a StopWalk cycler on ego by default. Except in extreme cases, you should not alter ego's edgeHit

property here.
2.1.4 Initiul Code Based on Previous R

Any initial code based on the previous room, such as positioning ego or setting vars, is
accomplished by the (switch prevRoomNum) statement, as follows:

(switch prevRoomNum
(north
[code ifcoming from the north]
)
(south
[code if coming from the south]
)

)

[t is helpful to include an else clause that sets debugging information when teleporting.

2.1.5 Super Init:
The (super init:) statement causes the super class, Room or a subclass thereof, to perform its
initialization code. Among other things, this code draws the picture and sets ego to walk into the room (if

appropriate).

2.1.6 Setting Up Polygons

This is where polygons should be added to the room's obstacles list. They may be created
dynamically (the normal output from the polygon editor) or be static instances that are simply added to the
list.

This is where all the Actors, Props, Views, and PicViews are initialized. From a size standpoint,
it is cheaper to send complex messages here than to override the object’s init method. For example:

(object init:, approach Vecbs: verbList)

51f all resources have been pre-loaded and disk access is still occurring, this may indicate that the room is

"hunk heavy" and prone to thrashing. See also sections 1.4 Overlay Modules and 3.2 Pre-loading
Resources.

2.1.8 Setting Up Feutures

Features should all be initialized in one place to make locating them later easier. Features should
be initialized individually, just like other objectsS. As with objects in the cast, it is better to have complex
messages here than in the Feature's init method.

This is where other initialization code should go. [strongly suggest annotating this code well to
make it as clear as possible.

2.1.10 Setting Script(s)
Finally, the init method of a room should set any scripts that need to be executed upon entering a
room. Sometimes another switch is required to set different scripts based on the previous room.

2.2 Dynamic Objects

A dynamic object is a clone of an object, an exact duplicate. They are useful when you need an
object, but don't care which object. For example, you might need a temporary list to hold numbers for a
sort routing. A dynamic list can be used just like any instance of List, but does not require an instance in
the module. In the debugger's object list, a dynamic object will be preceded by an asterisk and will bear
the same name as the object from which it was cloned. There are two ways to create a dynamic object:
(theObj new:) and (Clone theObj). Whenever possible, the new method should be used instead of the
kemel call.

Because dynamic objects allocate space off the heap instead of hunk, it is important to set a
variable to the object's address so that it may be disposed of later. Orphaned dynamic objects (those left
"hanging" with no handle to them) can cause frags or heap problems. By the same token, the number of
dynamic objects in memory at one time should be monitored carefully. Too many objects can lead to low
heap problems.

2.3 A Word About Feutures

The notion that it is more efficient to add all the features to the features list and then init them all
is incorrect. Since the init method of Feature adds the object to the features list, it is redundant to add it
manually before the init. For example:

Replace (Ratures with (objectl init:)
add: (object? init:)
objectl (object3 init:)
object2
object3,
eachElementDo: #init
)

Features created with the on-line feature writer will have simple nsRects that define the area for
which the onMe method will return TRUE, thus cluiming an event. This "claim area® can be redetined
by:

8For more information on features see also section 2,3 A Word About Features.

redefining the onMe method

setting the SKIPCHECK signal bit

setting the onAfeCheck property to a control color

setting the onMeCheck property to an instance of polygon

LoD On WO8 On

Redefining the onMe method is by far the most versatile, though often not the most convenient.
Setting the SKIPCHECK bit in the signal property is very easy and requires no changes to the view or the
code. Sectting the onMeCheck property to a control color is also very easy, but requires a change to the
picture. Of the three, | recommend using SKIPCHECK wherever possible.

This brings us to dynamic polygons in features. Creating a dynamic polygon in the feature's init
method, then putting its object ID 4nto the opMeCheck property is inefficient at best and dangerous at
worst. Not only does this method require redefining the init and dispose methods to create and dispose
the polygon, but each dynamic polygon created will allocate approximately 300 bytes off the heap. In a
room with 25 such features, up t0:7,500 bytes of heap could be allocated by dynamic polygons. In
addition, should you forget to dispose of the polygon in the feature's dispose method, the resulting frag
can be very difficult and time-consuming to trace. [strongly advise against this method of defining
features.

A word about addToPics: Whenever the a2ddToPic method of a View, Prop, or Actor is
invoked, two things happen. First, a PicView clone is created and added to the addToPics list. It will
have all the properties of the original object, but will be named "PicView". Second, the original object
will be removed from the cast and added to the features list. This is NOT a dynamic object, but the
originai object itself.

2.4 Annotation

When faced with the decision of throwing something away, my father used this rule of thumb: If
he hadn't used it in the last year, he figured he'd never use it again and it got tossed. The same rule of
thumb applies to commented code. Lines of code are usually commented because:

they aren't needed any more

they have been temporarily replaced by new code
they have been permanently replaced by new code
they have been temporarily removed for testing

WO WOR WO Ot

If your commented code falls inta any of the first three categories and you have not re-instated it within
two to three days, remove it. Old commented code is a waste of space and makes reading the
uncommented code more difficult.

When dealing with objects, there are two areas in particular where [like to see comments. The
first is immediately following a method declaration, unless the function is obvious, and the second is
following each new method and property declared in a class. For example:

(instance myObj of Prop
(method (doit)
o1 like to see comments here unless the code in this
; axethod is really obvious

(class myClass kindot Prop

(propertics

foBar ; Explain what this property does!
)
(mxethods

setFooBar ; Explain what this method does!
)

)

Additionally, I have found that it is helpful to comment the closing paren of a method or object,
especially if the code is more than 30 or 40 lines. When scrolling through a file it helps to be able to
identity the object that immediately precedes the code I'm reading. For example: .

(instance myObj of Prop
(method (init)

) ;Don’t need a comment here
(method (doit)
«e. 30 lines ...
) send doit < - Nice to hawo this!
) send myObj < - Nice to hawe this, too!

The general rule is: If you can see both the method declaration and closing parea without touching the
arrow keys or Page Up or Page Down, a4 comment is unnecessary.

Most people have customized their comment macros to- insert special characters after the
semicolon. For instance, your comments might look like this: ;§§. Some people use their initials, as in:
sSRC or ;BH. These are helpful in determining who has changed code.

3.0 Optimization

We are pushing toward single-platform development, which means that once the game is shipping
on the IBM platforin, we would like to be able t roll it over to the Macintosh und Amiga with no
significant changes to code or other resources. Granted, this will require many changes to our existing
system and tools. But even when the all else has been done to that effect, the single largest responsibility
lies with us, the lowly application programmers: Optimization. It won't do us any good to be able to roll
a game over to the 4.77 MHz Amiga in 2.6 hours flat, if it runs like a slug when it's there.

We have to take the responsibility at the time the code is designed and written to ensuré that it
will run as efficiently as possible on even the slowest machines. That does not mean, however, that we
have to sacrifice animation to the point where the game becomes a slide show on a fire-breathing 386 or
486 machine. There is a happy medium, which is well-designed und well-written code that respects
machine performance variations.

The worst offenders, in terms of speed and efficiency, are:

§ doit methods with code that need not be done every cycle

§ sending messages each time information is needed instead of setting a variable the
first time and using it in subsequent code

§ not making certain animating objects are stop-updated or even added to pic when
possible

not implementing detail level

not pre-loading resources

bad overlay module management

inefticient code layout and lack of encapsulation
"Band-Aids", "quick fixes", "patches”, "prophylactic code”

O® LO9 WOr WO WOe

If you have any questions about the best way to accomplish a task, ask me. 1f I don't know I'll
be happy to find out.

3.1 The Dreaded Doi

Doit methods are really neat. Every game cycle each object that has a doit method gets a shot at
stardom. Imagine that each object with a doit method is a lead programmer and that one game cycle is
one project status meeting. The more material each one has to report and the more inefficiently he
presents his report, the more time will be required to get around to everyone and the longer the lead
meeting will take. Now imagine that Ken Williams has mandated that the project status meeting will take
no more than 30 minutes. To fit within this time constraint each lead has to report only the material
necessary in a clear, concise manner. Likewise, each doit method needs to contain only the code
necessary and in a clear, concise syntax. :

Every message sent takes time to execute and 16 bytes of compiled object code. Therefore,
every message you can avoid in a doit is that much less overhead. If you will be checking an object's
property or the return value from an object's method repeatedly, set a variable the first time, then use it
for all subsequent checks.

Most of all, remember that objects have minds of their own; they have properties to remember
data and methods to facilitate actions and reactions. They don't need to be babysat by a doit method. For
instance, in the following doit code:

(if (= = (theMusic prevSignal?) -1)
(theScript cue:)
)

a message is sent to theMusic and a comparison is done each and every game cycle. This sort of code
should be replaced by the following lines, where the music is first played:

(theMusic play: theScript)

3.2 Pre-loading Resources

Every time the interpreter needs a view, picture, sound, cursor, font, or script that is not in
memory, it has to go searching on the disk. Even on a fast hard drive this can cause pauses in the
animation that can ruin the continuity of a scene. These "disk hits™ can be avoided by simply pre-loading
every resource the room will use, before it tries to use them. As explained in section 2.1, these pre-loads
should be done at the very beginning of a room's init method, using the following statement:

(Load resource Type resourceNumber resourceNumber ...)

where resourceType is one of the resource type definitions in SYSTEM.SH. Following the resource type
is & list of all the resources of that type you wish to load, as in:

10

(Load VIEW

vEgoDying
vEgolaughing
)
(Lvad CURSOR
exitCursor
wa lkCursor
)
(Load SCRIPT ABOUTCODE)

You can use the -¢ option when running the interpreter to help you find disk hits in your room.
This option will cause the cursor to change to a disk drive icon whenever a resource is loaded. No disk
cursor means no disk hits.

A message can either invoke a method of an object, set a property, or query a property. The
syntax rules are as follows:

invoking a method: (object method: parsmelers)
setting a property: (vbject property: expression)
querying a property: (vbject property?)

While the punctuation following the selector (: and ?) are optional to the compiler, they are required by
me.

As mentioned in section 3.1, every message sent to an object requires 16 bytes of compiled
object code. When you consider that often times there are many messages sent that you can't see in your
code, the total number of messuages passed during the execution of one little room is astounding.

For this reason it is important to optimize your messaging as much as possible. Store the result
of a message if you will be using it frequently. Often this can be done in-line with other code, as in:

(if (= theObj (theScript client?))
(theObj posa: 100 100)
)

By storing the result of (lheScnpé client?) in the variable theObj, we have saved ourselves from having to
query theScripts client every time we want to use it.

4.0 Indention

More than any other factor, indention style can make code very readable or impossible to read.
Different college instructors teach different methods, depending on their background and the language
they teach, but here is the way [want to see code indented:

§ Set your tabs in BRIEF to 4, 7. This means the first tab is at column four and every tab

thereafter is three columns apart.
§ Asa general rule, all statements in method, procedure, ifor cond block, while or for loop, or
switch statement should be indented to the nearest common column

§ Values in property lists should be indented to the nearest common column (see Example |
below)

§ Parameters in complex messages should be indented to the nearest common column (see
Example 2 below)

§ Closing parens should be outdented to the same column as their match

§ Expressions in an #ad or or statement should be indented to the nearest common column (see
Example 3 below)

§ The first expressing following an aad, or, or not statement should be on the same line as the
statement (see Example 3 below)

§ Values in consecutive define statements should be indented to the nearest common column

§ Initial values of local variables should be indented to the nearest commoan column

§ Array elements shouldbe indented to the nearest common column following either the array
name or the open bracket (see Example 4 below)

4.1 Tabs vs. Spaces

BRIEF will allow you to fill columns to the left of text with cither tabs or spaces. [prefer tabs
because they are easier to manage when moving code around. Get into the habit of using the TAB and
SHIFT-TAB keys to indent and outdent blocks of code. You'll save lots of time over manuully inserting
and deleting spaces.

4.2 In IfBlocks

All statements that belong to a specific condition shouid be indented to the same column.
Likewise, all expressions should be so aligned, with the first expression following an and, or, or aot
statement falling on the same line as the statement. (See Example 3 for details or talk to me).

4.3 In Properties Lists

Values in properties lists should be indented to the nearest common tab, meaning that they will be
aligned vertically in the tab position closest to the longest property name. [have a BRIEF macro that
automatically aligns property values which [will be happy to give you. (See Example 1 for details).

4.4 In Complex Messages

Similar to values in a properties list, parameters in a complex message should be indented to the
nearest common tab. The should be aligned vertically in the tab position closest to the longest selector
name. [have a BRIEF macro that automatically aligns complex message parameters which [will be
happy to give you. (See Example 2 for details).

4.5 In Arrays

Initial values in arrays should be aligned with the nearest common tab following either the array
name or the open bracket. While | prefer moving the open bracket to the line following the array name
and indenting it one tab, this is against standard C coding conventions and so | won't enforce it. The
indention of the array elements, however, is required. (See Example 4 for details).

12

4.6 Blank Lines

Blank lines can be very helpful in setting groups of related statements apart from each other. [
don't have any hard fast rules about using blank lines; use your best judgement. [If a blank line makes the
code easier to read, put one in.

4.7 Examples
Example 1: Indention of property values
(properties
X 3,
y 3,
view [00
)

Example 2: Indention of complex message parameters

(theObj
setloop: 0,
setCel: 0,
setCyele: Forward
)

Example 3: Indention of expressions

(if (and (== theView 100)
(or (theOby isKindOF Thing)
(theObj respoadsTo: thing Value)
)
)
(Priat "Foo to all”)

)

Example 4: Indention of array elements

(local or (local
myArray = myArray = [
{ valuel
valuel va lue2
value2 /]
/)
)

13

5.0 Naming Conventions

There are a few Sierra standards concerning the naming of variables and objects that we will be
using. Note that capitalization is essential. The standard conventions are:

globals, locals, temps
flags

point flags

defines, text substitution
defines, numeric constant
defines, external reference.
classes

procedures

inventory enums

views

inventory views

pictures

actors

talkers

scripts

music

sounds

globalNane
fFlagName .
ptFlagName (.((fu\u | po |':\{.’..)—;1 S Ddf l!«(_,) Mutme
detineName
DEFINE_NAME
xDefineNa ax
ClassName
ProcedureNanx:
ilavitemNa nx
vViewNane
ivViewNa e
pPictureName
aActorNu e
tTulkerNa nxe
sScriptNa nx
mMusicName
aSoundNanx:

If you can think of other defines that should be in this list, let me know.

The Part at the End

In general, keep your code as clean and efficient as possible. Again, the rules in this text are not
set in cement. Any comments or suggestions will certainly be faughed-at considered.

The first time any of you break the above rules, you will be told nicely. The second time you
will be told firmly. The third time [will personally dull all your pencils so they won't stick in the ceiling
anymore, change all occurrences of your name in the source code to Arvin Slatherlord Loudermilk LI,
and force you to take lunch at 8:35 am for a week. So there.

14

from = Y 5¥

Iex Brian | , //7/7”1.
(T OMu»lfq‘/J {5 éf?.‘ /: Mp vl Mg e /47“"‘“’/
| & o

. I /:‘ée (/

L, /}yg 13 — flos é Jn s | | |
L ke é/m\L les e Seliseen q// ,v,:,/',, et o
O(Z/'GC‘/J; vy ('Z]ﬁ}ﬂ/j‘/ ,oco(/w'f_,r/ y, ‘/Lc__' /]/JO ,“%“ftp

/Orjf- b loc é,f il ’”'6’//17000 (9,7 Coa/-)", l‘-’?’c..)

= | /th_ 1{3 "‘e'f\“ﬁr/(’l T &W'éf//“"\ of? arlr,y, vé’/e’/,\c;»;‘//).
Don"/_ L«D/V Ol‘o‘dv e ' J‘fan/o«a/f "’/'Low—]DIVI-/
(/;)rc,')cdrrdo(> Q/&‘FI’DQCA /.J' vorec Hdalql./(/ J‘/mf{/

ée ﬁe J“aqélarol,
% /4({/(TV {'l’C/é',\{'IUa fTaqo{aVa{r; L//'Cn _f"“//?’j .

"1{//76/ Or aJJ‘j'jﬂ'y W/M/ 7(" ft’l/(,a/ oLJ'ec 7I.J
or Va/,'q['/f/ roa rov, ,'nole, 7’\) o s 0 T2k,
‘E/k-q'/hf/cs"' (: X 17)

(: W(\Ootlm,— 27)

X 0{0(1':)’ 2—>

Foobar rescind® TRVE)

I i‘z‘——I /'Le ur. d)l\{\ ‘/ arah 7")’1
j(’. . [0 (TTeren Néara Conytn /1%
HOV O(Lou_f Jbﬁ‘p\he/\ée ‘For ’f‘ex'f'juﬁ. Je:zm(’f SO
oy do't look like varielle, (Tve Jees wpm
Df“rme /Van;e, Jvu+ Co‘,.(&a JV/~'7/CA . j

é. fme_ 1_{ “"./\'I‘(’J';'a ;)-, -T U,rq‘. \\7“ l/\/&f’:) {‘lvo[:tu q
J J77

rieflod l}JLf‘[u S0 e// Fefum, a value (I't, a
“propety—lke” refhod) — TV is o quyliy, "1 for imp

	Page01
	Page02
	Page03
	Page04
	Page05
	Page06
	Page07
	Page08
	Page09
	Page10
	Page11
	Page12
	Page13
	Page14
	Page15

