
laura Bow II
Programming Style Manual

Coding Preference. Of Brilln K. Hughee

This is an attempt at a programming style manual. It is intended to provide the r~ader with Il tist
of my coding stylt:s, and the DOs and DONTs of coding on Laura Bow II. It is not intenJed tu be Bn
Builwri;,.:J representatiCln u{Sierra coding policies. While many of the rules Iislc:d in this document are
nu mort: thlll1 the personlil pn:fen:aces of a demented It:ad programmer (yours truly), I hop«: that the
m~orily of this material will become ingnlin~d in your prognunmer-sdf ami carri~ on to your n~llt
project. Obviously, I'd like to see everyone adopt my coding style, but I am not the only It:ad
programmer here. Just as I like things my way, so another lead may like it differently. The best we can
hope: for, therefore, is a union of t;tyles; if we all code alike, it r~ally doesn't mlltter if it's my way or
someone ~I~'s.

PI~ase keep in mind that the informlltion in Utis document is nut carved in stone (but only because
my printer has trouble feeding slabs of granite). If you have a !k:rious objc:ction to a concept herein, or
fed you have a more efficient way to achicwe the desired result, fed free to contact me. I firmly believe:
that one who is in a teaching capacity must spend roughly half his time learning as well.

Contents

1.0 Module Organization pag~ 3
l.l Thc= Ordc=r of Things pag~ 3
1.2 Pruc~dur~s . pagc= 3
1.3 Public Entri~lI & Externah pag~ 4
1.4 Overlay Modules page 4
2.0 Obj~ct Organization pag~ 5
2.1 Room fnit pag~ 5
2.1.1 Pre-loading Resources page 6
2. 1.2 S~Uing the R~gion page 6
2.1.3 S~lIing Up Ego page 6
2.1.4 Initial Code Based on Previous Room pag~ 6
2.1.5 Sup~r fnit page 6
2.1.6 S~lIing Up Polygons page 6
2.1.7 Setting Up the Cast page 6
2.1.8 Selling Up Features page 7
2.1.9 M iscdlaneous Initial Code page 7
2.1.10 Setting Script(lI) page 7
2.2 Dynamic Objects page 7
2.3 A Word About Features page 7
2.4 AnnolHtiun rutge 8
3.0 Optimization page 9
3.1 The Dreaded Doit page 10
3.2 Pre-Loading R~sourc~s page 10
3.3 Mesllllging page II
4.0 Indention page II
4.1 Tabs vs. Spaces page 12
4.2 In If Blocks page 12
4.3 In Properties Lists page 12
4.4 In Complex Messages page 12
4.5 In Arrays page 12
4.6 Blank Lin~ page 13
4.7 Examples page 13
5.0 Naming Conventions page 14
6.0 The Part at the End page 14

2

1.0 Module Or~anization

Arranging th~ e1~menls of your module in a particular onler makt:~ the code much easier to read
and maintain by others. Generally, grouping object by type is the easiest, although sometimes it is more
logical to group objects hy subject. For t:lt8mple, an actor could be: grouped with all the other actors, or
with his mover, sound, and script. Either way is acceptable.

Clearly mark your groups so that tht:y can be found easily. A distinguishable comment bt:fore a
group of items is the easiest way to do thill. I have II macro, called MakeBox, which will crc:att: a double­
lined box around II piect: of text. 1 will be happy to pruvidt: this macro to anyone who wants to adopt its
sty It:.

1,1 The Order or ThinI:s

Tht: following chart represt:nts how I like to organize a file. Y ()u need not adhere to it strictly,
but I strongly recommend it. Items malkc=d with a § are r~uirc=d t(lr every module.

header comments
script /I
includes
procedure list
public entry list
defines
locals
instance of LBRoom
procedures

../ Actor!! &. Props

1.2 Procedures

Talkers & related objecls
View!! & PicVit:ws
Features
Sound, Code, & M isc

In the above list, you'll, notice that I recommend procedures do not come before the instance of
room. The rational behind this is that thtl main object in the module (the room instance in room module!!)
should be the fifllt code encountered. Some modules may contain !reveral long procedure!!. It is
inconvenient to one perusing the file to have to page-up and page-down through these procedures to see
what the main object look!! like.

Be aware of your coworkefll' procedures. If there is a- procedure already written that may be
used again with little or no moditication, it may be beneficial to break the procedure out of thtl module in
which it resides, put it into room 0 or other public module, and create an external reference ddintl for it in
GAME.SII. ? ~ .. r.b_~ r'''~\',"?

t Header comments should include the name and purpose of the mooult:, the author, the date last Updated,
and a list of any classes dermed in the module.

3

1.3 Public Entries & Externals

Any object that will bl! rt:f~n:nced uutsid~ the modul~ in which it r~sid~s must 00 assign~d It

public entry nwn~r in thllt mudul~. As an exampl~, an instllOce of room in a room m()dul~ must ~
llssigned public ~ntry number O. This is how GSnld startRoonJ knows lllx)Ut th~ room2. Public objc::cts are
rc:ferenced in other modules viII the ScripiJD kernel call. ScriptlD takes as paramet~rs the number of th~
modul~ in which our public object resides and the public entry numbt:r assigned to it, and r~lUms an
address to that object. For example, given:

(script# 1(0)

(public
myktorO

)

(instsDCtj nu'ktor of A.:tor)

we can reference myActor from another module with (Script/D UX) 0)

(f'you will ~ referencing an ()hj~ct more than once, yuu shuuld create a d~rlOe for the Sc:riptlD
call. In the above example, we could save the object ID of nu'ktor fur use in several places, by creating
the following d~rme:

(deJiae xMyAct(}r1 (ScripllD 100 0))

Procedures may be refert:nc~d externally as well as objects. The process is the same for objects
and procedures, but our procedures will ~ referenced through t!J(tern slBtemenlll in GAME.SII. These
work the same as the Sc:ript/D slBtement above, but generate a different PMachine op code.

I .4 Oyerlay Modules

Overlay modules are modules that contain ubjects related to, but not always necessary for, a
room modul~. You should r~view the code situation very clm:fully bt:fure splitting code out into au
overlay module. Overlays are often difficult to manage, and can bt: v~ry tricky as fllr 8!j memory
management. By contrast, howev~r, they are Dot as difficult tu create as they seem. Overlays should ~
considered if:

§ The total size of the source module is approaching 64K
§ There is a group of objects or large amount of code that is used only in • specific situation
§ The amount of hunk available when running the mom is I~ss than 5K
§ Ther" is a group of objl:Cls or larg~ amount of code that can be shared by other modules

Creating an overlay module is a relatively simple process. Refming it, however, may tak~ some
time and will most certainly break the original mooul" temporarily. To cr~ate an overlay module, do the
following:

21f you are receiving a NOT AN 08JECT: $0 error when Garm stuiRoom tries to add your room to the
regions list, check to see if you've forgotten the public entry for your inslllOce of LBRoom.

3Refer 10 section 5.4 Defines. Globals. Flaes. & Vars for more information on this syntax.

4

§ Create a new filt: with an appropriate name
§ Move lht: code to 00 split nut into the: ne:w module
§ Create public entrit:!! in the original module: for uhje:cts that must 00 rl!fe:renced in the overlay
§ Creatt: externlll rl!fl!rl!nce dl!fint!!! in the overlay to point to tht: public entrie!! in the original

module
§ Cr~te public eotrit:s in the overlay for objects thllt must 00 referenced in tho originlll module
§ Create external reference defines in the original mudule tn point 10 the public t:ntries in the

overlay
§ Be sure that either the original mooule or the overlay itself removes the overlay from

memory when fwished with it

The hardesl part llbout creating overlay modules is gelting the external referencing correct. NOT
AN OBJECT will generlllly melln that one of the two mooult!s is trying tn st!nJ a message to an ohject
that is no longer in that module. DISPATCH NUMBER TOO LARGE generlllly is caused by trying 10

reference a public entry thllt ill largJr than the last public entry fur lhat module. For example, the e:rror
will occur if (Script/D 100 J) is uSt!d in one module and scriptJI 100 only contain!! pvblicentries 0, I, and
2.

I

2.0 Object Or~anization

How you layout your objects' cooe is nearly as important as how you layout the module, in
tenns of style. For most objects, this section is not important. But for a few objects such as room!!, these
guidelines are recommt:nded.

2. J Room lait

The room is one of the most common objects in the game, and the room's init method ill one of
the most frequently reft:renced. It is fairly important, tht:refore, to ke:ep the room's init method clean and
easily readable. One way in which this can 00 accomplished ill to ordt:r yuur room's iait cooe is the
following way:

I. Pre-loading Resources
2. Setting the region, if any
3. Sl!tting up eg04

4. Initial cooe based on. previous room
5. Super init:
6. Setting Up Polygons
7. Setting up the: cast
8. Setting up features
9. M iscellanoou!l initial cooe
10. Setting script(s)

4Ego must generaUy be inited oofore the (super init), if the room is an instance of a l>'Ubclass of Room
that hantJles walking ego in and out of rooms.

5

2. I . I Pre-loadifl2 Resources
All views, pies, sounds, cursors, and fonts used in the module should be loaded here. This

serves two purposes: I) to annutate whkh reSllurces are bdng use:d (better than comments at the: top of the
filc:), and 2) to pn:vent ·disk hits" during the executioo of a room, the theory being thllt if all the fe:source:s
are loadl!d the game should DeVer require disk Ilccess until anothc:r romn ehangc:. S

2.1.2 Settine the Region
Se:tting the room to a region (or vice versa, depending upon how you ehoo~ to look at it) is

accomplished with the (sdf s~l&gi()l1S: regionModult::Nuru) stateme:nt, where rr::gionMcJ<lul~Num will
usually be a deline from GAME.SH.

2.1.3 StU IDe Up El:o
Setting up ego will nonnally consist of two messages, ao init and • oorl11Jllize. Additionlilly, ego

may positionc:d herc: or hllvc: alternate cyclers and movers set. Notc: that the glUlle's slMrtRoom method
wiU put a StopWalk cycler on ego by default. Except in extreme cases, you should not alter ego's I!Clg~Hit
property here.

2.1.4 Initiul Code Based on Preylous Room
An)' initial cooe ba~d on the previous room, such as positioning ego or setting vars, is

accumplished by the (switch prevRoomNum) statement, as follows:

(swill:h prevRoomNum
(north

{code jf coming /Tom the north!

)

)
(south

)
[code if coming /Tom the south!

It is helpful to include an else clllU~ that ~ts debugging infonnatiun when teleporting.

2.1.5 Super Inlti
The (super init.·) statement causes the super class, Room or a subclllSll thereof, to perfonn its

initialization cooe. Among other things, this cooe draws the picture and S(:ts ego to walle into the room (if
appropriate).

2.1.6 SettilliUp Polygons
This is where polygons should be added to th~ room's ob!ltacles list. Tbey may be createc.l

dynamically (the normal output from the polygon editor) or be !ltatic instances that arc simply added tu the
list.

2.1.7 Setting Up Ihe ellSl
This is where all the Actors, Props, Views, and Pic Views are initialized. From a size standpoint,

it is cheapt:r to send complex m~ssages here than to override th~ object's ;nit methoo. For example:

(object init:, .pproac.:h Verbs: verbust)

51f aU resources have been pre-loaded and disk access is still occurring, this may indicate that the room is
"hunk heavy· and prone to thrashing. sc!~ also sections 1 d Overlay MtxJules and).2 Pre-Ioadin¥
Resoun:c:s.

6

2. 1.8 Sdti!12 Up Feutures
Features should 1111 be initialized in one place to make locating them later easier. Features should

he initialized individually, just like other oojects6. As with oojects in the cast, it is better to have complell
messages here than in the Feature's iail method.

2. 1.9 Mbcellaneous Initial Code
This is where other initialization code should go. I strongly suggest annotating this code well to

make it as clear as passiole.

2.1.10 St1tin~ Scrjpt(s)
Finlilly, the iait method of a room should set any scripts that need to he executed upon entering a

room. Sometimes another s~tch is 'required 10' set different scripts ollsed on the previous room.

2.2 Dynamic Obiects

A dynamic object is a clone of an object, an exact duplicate. They are useful when you need an
object, but don', care which object. For example, you might need a temporary list to bold numbenl for a
sort routim;. A dynamic lilit can be used just like any instance of List, but d~s not require an instance in
the module. (n the debugger's object list, a dynamic object will he preceded by an asterisk and will bellr
the same name as the object from which it was cloned. There are twu ways to create a dynamic object:
(theObj new:) and (ClolW theObj). Whenever possible, the ndW method should be used instead of the
kemd call.

Because dynamic objects allocate space off the heap instead of hunk, it is important to set a
variable to the object's address so thllt it may be disposed of later. Orphaned dynamic objects (those left
WhangingW with 00 handle to them) clln cause frags or heap problems. By the same tuken, the numher of
dynamic objects in memory at one time should be monit()f~ carefully. Tuu many ubjects can lead to low
heap problems.

2.3 A Word About Feutures

The notion that it is more efficient to add all the features to the features list and then in it them all
is incorrect. Since the iail method of Fellture adds the object to the featurell list, it ill redundant to add it
manually ~fore the init. For example:

Replace (&tures with

)

.dd:
object!
object2
ohject3.

eJJchEJenrnllJo: linit

((/hject! init:)
(object2 init.·)
(object3 iail:)

Features created with Ihe on-line feature writer will have simple nsRects that define the Ilfea for
which the ()~ method will return TRUE, thus claiming IlO event. This "claim luellW can be redefined
by:

6Fof more information on features see also section 2,3 A Word About Et!atur!fs.

7

§ redt!fming thl! onAte mt:thmJ
§ st:lting tht! SKIPCHECK signal bit
§ setting the onAfcCheck pro~rty to a control color
§ st:lting the onAfcChC'Ck property to IUl instanCI! of poly gon

Redefming the onAk method is by far the most versatile, though oftt!n not the most convenit!nt.
Setting the SKiPCHECK bit in the signal property is very easy and retjuirt!s no dllUlges to the view or thl!
codl!. St:tting the onMeCbeck property to a control color is also vt:ry ~sy, but retjuirell a change to the
picture. Of the three, I recommend using SKlPCHECK wherever possihll!.

This brings us to dynamic polygons in features. Creating a dynamic polygon in thl! featurl!' s mit
method, then putting its obj~t ID ~nto the ()pki£beck pro~rty is inet'ticient at best and dlUlgeroulI at
worst. Not only does this method r~uire redeftning the init and dispose methods to create and dispose
the polygon, but eacb dynarnil! polygon created wiU Illiocate approximately 300 bytes off the heap. In a
room with 25 such featun:s, up to'7,500 bytes of heap could be Illiocated by dynamic polygons. In
addition, sbould you forget to dispose of the polygon in the feature's dispose method, the resulting frag
can be very difficult and time-consuming to trace. I strongly advise against th.i; method of derming
features.

A word about addToPics: Whenever the .ddToPic method of a View, Prop, or Actor is
invoked, two things bappen. First, a Pic View clone is created and added to the addToPics list. It will
have all the propertieli of the original object, but will be named ·PicView·. Second, th" original object
will be removed from the cast IUld added to the features list. This is NOT a dynamic obj~t, but the
original object itself.

2,4 Annolutjon

When faced with thl! decision of throwing something away, my father used this rule of thumb: If
he -badn't used it in the last year, hI! figured he'd never use it again IUld it got tossed. The same rule of
thumb Ilpplit!ll to commented code. Lines of code are usually commented because:

§ they aren' t nt:ecled lUly more
§ they have ~en temporarily replaced by new cooe
§ th~y have been (l«:rmlUlentJy r~placed by new cod~
§ they have ~en temporarily rc:moved for testing

[f your commented code falls into any of the first three categories and you have not re-instated it within
two to three days, remove it. Old commented code is a waste of space and makes reading the
uncomml!nted code more difficult.

When dealing with objects, there are two areas in particular where I like 10 see comments. Tht:
tirst ill immediately following a method declaration, unless th~ function is obvious, and tht: second is
following each new method and pro(l«:rty declared in a class. For example:

(instJi nco myObj of Prop
(method (doil)

)
)

; I like to see comments hero unless the code in this
; method is reJIJ/y obvious

8

(class myClsss kindofProp
(pruperti.:s

i"oBar ; Explain what this property does!

J
(methods

setF"oBar ; E'qJlain "hat this method does!

J
)

Additionally, I have found that it is hdpful to comment the closing paren of a method or object,
especially if tht: code is more than 30 or 40 lines. When ~wlling through I filt: it hdps to bt: ablt: tu
idt:ntify the objt:et that immediatdy prect:des the: code I'm reading. Fur example:

(inslJlnco myObj o{Prop
(mt:thod (inil)

J ;Don't need. comment here
(tnt:thexJ (doil)

... 50 lines ...
J ;enJ doit < - Nic:" to hll", this!

) ;end myObj < - Nic~ w h.", this, tex,!

The gt:neral rule is: If you can set: both the method declaration and closing panm without touching the
arrow keys or Pagd Up or Page: Down, a comment is unnt:eessary.

Most people bave cuslomized their comment macros to insert spec ill I characters after the
semiculon. For instance, your comments migbt look like this: ;U. Some people use their initials, ItS in:
;SRC or ;BlI. These are bdpful in determining who has changed code.

3.0 Optimization

We are pushing toward single-platform development, which means that once the game is shipping
on the IBM platfonn, we wuuld like to ~ able to roll it over lu the MacintO!ih and Amiga with nn
significant changes to code or other resources. Granted, this wiu retjuire many cbanges 10 our existing
system and lools. But even whep the all else has bet:n done to that effect, the single largest responsibility
lies with us, the lowly application' programmers: Oplimization. It won't do us any good 10 be abld 10 roll
a game over to the 4.77 MHz Amiga in 2.6 bours flat, if it ruOll like a lIlug when it'. there.

We bave 10 lake the responsibility at the lime the code is delli20ed ami written 10 ensure that it
will run as efficiently &II possible on even the Glowe!!t machines. That does not mean, however, that we
have 10 sacrifice animation to the point where the game becomes a slide show on a fire-breathing 386 or
486 machine. Ther" ill a happy medium, which is well-designed and well-written code that respects
machine performance variations.

The worst offenders, in lc!rms uf speed and efficiency, are:

§ doil methods with code that need nut be do De every cycle
§ sending messagell each time information· ill needed instead of ~"ing a variable the

first time and using it in subsequent code
§ not making certain animating objects are stop-updated or even added to pic when

pollsible

9

§ . nol implementing dtltail Itlvel
§ nol pn:-Ioading resources
§ bad overlay modul~ management
§ inefticienl code layout and lack of encapsulation
§ "Band-Aids", "quick fixes", "patches", "pruphylactic code"

(f you bave any questions aboul the best way 10 accomplish a task, ask me. If I don't know ('U
00 happy to fmd out.

3.1 The Drt:'clded Doil

Doit methods are really nelft. Every pme cycle each objecl that hill! a doit method gels a shot at
stardom. Imagine that each uhject with a c/oilmethod is • Itlad programmer and that one gllJIle cycle is
one projc:ct status meeting. The more material t:llch one has to report and the more inefficiently he
presents his report, the more time will 00 retjuiroo to get around to everyone and the longer the lead
mc:eting will take. Now imagine that Ken Williams bas mandllted that the project s'!tusmeeting will take
DO more than 30 minutes. To fit within this time constraint each lead bas to report only the material
necessary in a clear, concise manner. Likewise, each c/o;1 method needs 10 contain only the cooe
necessary and in a clear, concise syntax.

Every message sent takes lime 10 execute and 16 bytes of compiled object code. Therefore,
every message you can avoid in a doit is that much less overhead. If you will ~ checking an ubject'li
property ur the rerum value from an object's method repeatedly, Sc:t a vllrillble the first time, then use it
for all subsequent checks.

Most of all , remember that objects bave minds of their own; they halVe properties 10 remember
data and methods to facilitate actions and reactions. They don't need to be babYllllt by a c/oit method. For
instance, in the following C/oit code:

(if(= = (theMusic prevSigDII/?) -I)
(theSc:ript cue:)

)

a message is sent to theMusic and a comparison is done each and every game cycle. Thi!l sort of code
should be replaced by the following lines, where the music ill tirst played:

(theMusic pIMY: theScript)

3.2 Pre-loadiU Resou[c~

Every time the intc!rpreter ncc!d!l a view, picture, sound, cursor, funt, or script that ill not in
memory, it has to go Sc:3rching on the disk. Even on • flASt bard drive this can cause pausell in the
animation that can ruin the continuity of a scene. Thc!se "disk hits" can be avoided by simply pre-loading
every resource the room will use, before it tries to use them. As explained in !lection 2.1, the!le pre-Ioad!l
should be done at the very beginning of. room's wt mcthod, using the following statement:

(w.d resourc(1)pe resourceNumber resoufl .. "t:Numb<!r ...)

where resource Type is one of the resource type defmitions in SYSTEM.SH. Following the resource type
is Ii list of aU the resources of that type yuu wish 10 load, as in:

10

(Load WEW
vEgClDying
vEgou ughing

)
(Load CURSOR

exilCursor
\u.1JcCurS(Ir

)
(Load SCRlPT ABOUTCODE)

You can use th~ -c oplion when running the inl~rpreler to help you find disk hits in your room.
This uplion will cau~ the curwr to change to a disk c.lriv~ kon wh~Dever • resource is loadt!d. No disk
cursor means DO disk hits.

3.3 MessaainK

A message can either invoke a method of an object. set a property. or query a property. The
syntax rules are as follows:

invoking a method:
setting a property:
querying a property:

(obj«t method: /MrMmelers)
(ohje.:t pmpt!rty: f!.tpressioo)
(objec:t propt!rty?)

While th~ punctuation following the selector (: and 7) arc optional to the compil~r. they an: [CQuircxJ by
me.

As mentioned in section 3.1. every message sent to an object require!! 16 bytes of compil~c.I
object code. When you consider that often times there ar~ many messages sent that you can't see in your
code, the total number of messages passt!d during the execution of one little room is astounding. ·

For this reason it is important to optimize your messaging as much as possible. Sklre the result
of a message if you will be using it frequently. Often this can be done in-line with other code. all in:

(if(= thcObj (theScripl client?))
(thcObj posn: 100 1(0)

)

By storing the result of (theSc:ript client?) in the variable tbeObj. we hllve saved ourselves from having to
query theSc:rip(8 client every time we want to use it.

4.0 Indention

More than any other factor. indention style can make code very readable or impossible to n:ad.
Different college instructors teach different methods. depending on their background and the hlOguage
they teach. but here is the way (want to see code indented:

§ Set your tabs in BRIEF to 4. 7. This means th~ tirst lab is at column four and every lab
thereafter is three columns apart.

§ As a general rule. all stat.:ments in method. procedure. ifor cond block. M1il" or fir loop. or
switch statement should be indt:nted to th" nt:an:st common column

II

§ Villues in property lists shuuld be indented to the nearest common column (see Example I
below)

§ Parameters in cumplex messages should be indentt:d to the nearest common column (see
Exampltl 2 bt:low)

§ Closing parens should be oUldented to the same column as their match
§ Expressions in an lind ur or statement should bc indcmlt:d to the ntlan:st common column (see

Example 3 bt:low)
§ The first expressing fullowing an .nd, or, or not statemt:nt should be 00 the same line as the

statement (lIt:e Example 3 bt:low)
§ Values in consecutive delind statements should be indtmted to the nearest common column
§ Initilll values of local VIlrilibles should be indented to the nearest common column
§ Array elements should'be indentc:tJ to the nearest cummon column folluwing dther the array

nllOte or the open bracket (see Example 4 beluw)

4, I Tubs ys, Spaces

BRIEF wiU allow you to till columns to the left of text with either tabs or spaces. I prefer tabs
because thtlY are easier to manage when moving code around. Get into the hllbit uf ulling the TAB and
SHIFT-TAB keys to indent and outdent blocks of code. You'll !;ave luis of time over manually inllt:rting
and deleting IIpaces.

4,2 In [(Blocks

All statements that belong to • IlpeciflC condition shuuld be indtlnted to the same column.
Likewise. 1111 exprellsions Ilhoulu be so aligned, with the fint expression following an .00, or, or nat
statement falling on the same line liS the statement. (See Example 3 fur uetails or talk to me).

4,3 In Properties Lists

Values in propertiell lists shoulu be indented to the neuest common lab, meaning that they will be
alignt:d vertically in the tab position closest to the longest property name. (have a BRIEF mllcro that
automatic:dly alignll property values which I will ~ bappy to give you. (See Example 1 for details).

4,4 In Complex Messaees

Similar to values in a properties list, parameters in a complex message should be indented to the
nearest common tab. Th" shoulu be IIligned vertically in th" lab position closest to the longest selector
name. I have a BRIEF macro that automatically aligns complex message parameters which I will be
hliPpy to give you. (See Example 2 for details).

4,5 (0 Arrays

Initial value!! in :Array!! should be aligned with the nell rest common bib following either the array
name or the open brllcket. While I prefer moving the open bracket to the line following the array name
and indenting it one tab, this is against standard C coding conventions and so I won't enforce it. The
indention of the array dements. however. is required. (Sec: Example 4 for details).

12

4.6 Blimk Lines

Blank lines can be Vt!ry hdpful in setting groups of rdated ~!Jltements apart from each other.
don't have any bard fast rules about using hlank line!!; use your best judgemt!nt. If a blank line make!! the
code ell:>ier to read, put ont! in.

4.7 Examples

Example I: Indentiun of property values

(pmpt:rties
x 5,
Y 5,
view 100

)

Example 2: Indention uf complex mes!l8ge p"ramelerll

(tbeObj
St:tU.H 'P:
St:10:1:
St:ICydr::

)

0,
0,
Fon,wrd

Example 3: Indention of t!xprt!ssion!!

(if

)

(and

)

(= = the View 1(0)
(or (theObj isKindOf. Thing)

(theObj responds To: tbingVlllue)
)

(Print· F()o 14, 1I1r)

Example 4: Indention of arrclY dements

J
)

valut:l
va/ue2

or (locill
myArrllY:= I

valuel
value2

I
)

IJ

5.0 Nanlin2 Conventions

Thl!re are a few Sil!ml standards concerning the naming of variables and objects that we will btl
using. Note: that capitalization is e:ssential. The: standard conventions are:

globals, locals, wmps
flags
point nags
defines, text substitution
defines, numeric constant
defines, exwrnal reference.
classes
pruct:dures
invenh>ry enums
vil!w!!
invenklry view!!
pictures
actor!!
talkers
scripts
musIc
sounds

gl(/haIN8~

1F18gNa~

plF!llgMUlt:: -ddu'lt,11 r,";'\~ pisDt'tl! <.J\JIII(.
c1t:1ineNa nt::
DEFINE_NAME
xDr:lineMJ(1Jt:
ClassName
Proc:ec1ureNa nt::
i/nv/lemNanit}
V V,cwNa nit}
ivV,ewNanit}
pPit:tureNa me
• ActorMII1Jt:
tTaIkerNIJnit}
sScriptNlJ ~
rnMusicNa~

II S()unJNa me

If you can think of other deftnl!slhat should Ix: in this list, let me know.

The Part at the End

In general, keep your code as clean and efficient as possihle. Again, the rules in this text are not
set in cement. Any comments or suggestions will certainly be lau~ considered.

The fiRt time any of you break the above rules, you will btlluld nicely. The second time you
will be told finnly. The third time (will ~rsonally dull all your pencils so they won't stick: in the ceiling
anymore:, change all occurrences of your nlUDe: in the source cooe to Arvin Slatherlun.l Loudermilk Ill,
and force you to take lunch lit 8:35 am for a week.. So there.

14

rroM' l.,Uf >y
10 j f?y ia"

(.1 o Ivt Wl t ,,\ ... { J u ,'

/. r hke. (-/.

f't'j'-' 13 - JIG 1 ~ If'" (J. .

T l;k ... i/6'~ ~ II \1 '5 ~ J.e f &J e e" 4 / (r-J i:v),1,](k.r
o~edJj ·t1ei{oift rOC.JwtJI. l fe. '11&'0 ·,f'f(r
ford'- 610< f.r v·AI,~ l"1e 1,' ojl' r;:J. c.0iI1!!', e1c ..)

J. r,,- . 13 - €y\" ., r Ie, if (.~ -~d I~" oP "n:r -e jOlt ~~l)
/)OI1'!- /rot'')'' ;bo,tf <Ie I, J td"jo..-b - jOllr PlY s-j
~rC-fev red) q f f, ,1Jq (4 if n, f) re. ha)qJj(t "L 0, (J
k ~l st~d~J. .

	Page01
	Page02
	Page03
	Page04
	Page05
	Page06
	Page07
	Page08
	Page09
	Page10
	Page11
	Page12
	Page13
	Page14
	Page15

