
 The Script Programming Language

 Author: Jeff Stephenson

 Date: 4 April 1988

 SIERRA CONFIDENTIAL

 Table of Contents

Introduction . 3

Files . 4

Definitions . 6

Data Types and Variables . 8

Primitive Procedures . 13

 Arithmetic primitives . 13

 Boolean primitives . 14

 Assignment primitives . 15

Control Flow . 16

 Conditionals . 16

 Iteration . 17

Procedures . 19

Using SC . 23

 Introduction

The Script adventure game language is an object-oriented language with a

Lisp-like syntax. It is compiled by the sc compiler into the pseudo-code

which is used by the interpreter, sci.

We will begin our discussion of the language with its basic Lisp-like

characteristics, then go on to the object-oriented parts of the language.

As is Lisp, Script is based on parenthesized expressions which return

values. An expression is of the form

 (procedure [parameter parameter ...]).

The parameters to a procedure may themselves be expressions to be

evaluated, and may be nested until you lose track of the parentheses.

Unlike Lisp, the procedure itself may NOT be the result of an evaluation. An

example of an expression is

 (+ (- y 2) (/ x 3))

which would be written in infix notation as

 (y - 2) + (x / 3).

All expressions are guaranteed to be evaluated from left to right. Thus,

 (= x 4)

 (= y (/ (+= x 4) (/= x 2)))

will result in y = 2 and x = 4.

Comments in Script begin with a semi-colon, ';', and continue to the end of

the line.

 Files

Source files for the script compiler have the extension .sc, header

(include) files have the extension .sh. Source files may have any filename

-- banner.sc and castle.sc are two examples. The output file from the

compilation will have the name script.nnn where nnn is determined from the

script# command (covered below) which is present in the file.

There are six files besides the source file and any user-defined header

files which are involved in a compilation.

classdef

 This file contains the information about the structure of the classes

 which have been defined in the application. It is read automatically

 by the compiler and is rewritten by the compiler after a successful

 compilation in order to keep it up to date. The user need not be

 concerned with it.

selector

 This contains definitions of selectors which are used in object-

 oriented programming. It is automatically included in a compile and,

 like classdef, is rewritten after a successful compile. Any symbol in

 a properties or methods statement or in the selector position in a send

 to an object is assumed to be a selector and is assigned a selector

 number in included in selector.

kernel.sh

 This contains the definitions for interfacing with the kernel (the

 machine language interpreter). It is maintained by the kernel

 programmers and is automatically included in system.sh.

system.sh

 This contains the definitions for interfacing with the various system

 classes. It is initially provided by the kernel programmers. If you

 wish to tweak the system scripts yourself, you will also be

 responsible for maintaining your copy of system.sh. It should be

 included in all compiles.

vocab.000

 This is the compiled output of vocab.txt, generated by the vocabulary

 compiler vc. It is automatically included in a compile.

classtbl

 This is an output file of the compiler which is used by the kernel to

 determine which script a given class is defined in. You needn't do

 anything to it other than not delete it.

There are two sc commands for dealing with source code organization:

script#:

The script# command sets the script number of the output file:

 (script# 4)

sets the output file name to script.004, regardless of the actual name of

the source file.

include:

This includes a header file in the current source file at the current

position.

 (include "/sc/foo.sh")

or

 (include /sc/foo.sh)

include the file /sc/foo.sh. Include files may be nested as deeply as

desired.

When including a file, the compiler first looks for the file in the current

directory. If it fails to find it there, it then looks for it in the

directories specified in the environment variable SINCLUDE. This variable

is just like the DOS PATH variable -- the directories to search are

separated by semi-colons. Thus, if you want the compiler to look for

include files in f:/games/sci/system and c:/include if it doesn't find them

in the current directory, you put the line

 set sinclude=f:/games/sci/system;c:/include

in your autoexec.bat file.

 Definitions

define:

The define statement allows you to define a symbol which will stand for a

string of text:

 (define symbol lots of text)

will replace symbol, wherever it is encountered as a token, with lots of

text and then continue scanning at the beginning of the replacement text.

Thus, if we write

 (define symbol some text)

 (define some even more)

then

 (symbol)

will become

 (some text)

which then becomes

 (even more text)

enum:

A construct for easing the definition of various states of a state-variable

is enum. Say you want to walk an actor from the door of a room across the

floor, up the stairs, and through another door. You have a state-variable

called actor-pos which will take on a number of values, which could be

defined with defines:

 (local actor-pos

 (define at-front-door 0)

 (define in-room 1)

 (define on-stairs 2)

 (define top-of-stairs 3)

 (define upper-door 4)

)

or you could get the same result with enum:

 (local actor-pos

 (enum

 at-front-door

 in-room

 on-stairs

 top-of-stairs

 upper-door

)

)

Enum defaults its first symbol to 0. If you want a different starting

value, put it right after the word enum:

 (enum 7

 at-front-door

 in-room

 on-stairs

 top-of-stairs

 upper-door

)

sets at-front-door to 7, in-room to 8, etc.

synonyms:

The synonyms statement defines synonyms of words. All words must have been

defined in the vocabulary file (see separate Vocabulary documentation). The

statement

 (synonyms

 (main-word synonym1 synonym2 ...)

 ...

)

defines the words synonym1, synonym2, etc. to be synonyms of main-word. In

input being interpreted by the script in which the synonym statement is

defined, user input of synonym1 will be interpreted as if the user had typed

main-word.

 Data Types and Variables

Numbers:

All numbers in Script are 16 bit integers, giving a range of -32768 to

+32767. Numbers may be written as decimal (1024), hex ($400), or binary

(%10000000000).

Variables:

Variables hold numbers. Variables can be either global, local, or

temporary, depending on when they are created and destroyed:

Global variables are created when the program starts and destroyed when it

 ends, and are thus accessible to all scripts at all times.

Local variables are created when a logic script is loaded and destroyed

 when it is purged. They are thus only available when the logic script

 is loaded and will not retain a value through a purge-reload cycle.

 You will find that, as your programming takes on a more object-oriented

 flavor, you will use fewer and fewer local variables.

Temporary variables are created when a procedure or method is entered and

 destroyed when it is left. They are thus only available to the

 declaring procedure and do not retain a value between calls to the

 procedure.

In order to throw the 'link' out of the traditional 'edit-compile-

link-test' cycle of software development, YOU, rather than the linker, must

define the address (i.e. variable number) of global variables. This is done

with the global definition:

 (global

 var-name var-number

 var-name var-number

 ...

)

This defines var-name to be global variable number var-number.

Local variables, not being accessible outside of the scripts in which they

are declared and thus not requiring linking, can have their addresses set by

the Script compiler. There are two ways of defining locals:

 (local

 var-name

 var-name

 ...

)

defines a single variables with the names var-name.

 (local [array-name n])

defines an array of n elements with the name array-name (the brackets in

this do NOT mean 'optional' -- they are required).

Multiple local variable definitions may be combined in one statement:

 (local

 var1

 [array1 10]

 [array2 5]

 var2

 .

 .

 .

)

Temporary variables will be discussed in the section on user-defined

procedures.

Define and enum statements may be included within both global and local

variable definitions.

Arrays:

To access element n of the array anArray, write

 [anArray n]

Despite the syntactic difference between local variable declarations and

local array declarations, there really is no distinction between variables

and arrays -- any variable may be indexed as an array. Thus, if we have the

local variable declarations

 (local

 var1

 var2

 var3

 var4

)

we can set the value of var1 to that of var4 by any of the following

statements:

 (= var1 var4)

 (= var1 [var2 2])

 (= var1 [var3 1])

 (= [var2 -1] [var1 3])

The first method is obviously the preferred method for clarity, but this

array property of all variables allows access to variable numbers of

parameters in a user-defined procedure (see section on user-defined

procedures).

This property of variables is also the basis of the method by which you

declare global arrays -- you simply leave an array-sized gap in the global

variable numbering sequence. To declare var2 as a global array of 10

elements, write

 (global

 var1 23

 var2 24

 ;10 element array

 var3 34

)

and access var2 as an array:

 [var2 7]

Pointers:

Some kernel calls require pointers to variables, rather than the value of a

variable. A pointer to a variable is created by preceding a variable

reference with the '@' sign. Pointers may be created to array elements as

well as to simple variables:

 @ego ;pointer to the variable ego

 @[foo 3] ;pointer to fourth element of array foo

Since there is currently no way in sc to dereference a pointer, this is only

useful for passing pointers to kernel calls.

Text:

Text strings are strings of characters enclosed in double quotes, and may be

used anywhere you like:

 (Print "This is immediate text.")

prints the text string,

 (= textToPrint "This text is referenced through a variable.")

sets the variable to a pointer to the text string, and

 (instance foo of Bar

 (properties

 name:"fooBar"

)

)

sets the name property of foo to be a pointer to the text string.

When sc goes to squirrel a text string away, it first checks to see if it

has seen the string before. If so, it just uses the previous text, rather

than duplicating the text. For long text strings which are used in several

places, however, the likelihood that you will manage to type the text

identically in each case is small. In this case you can simply put the text

in a define statement

 (define lotsOftext "This is a long text string. I am using a

 define statement to avoid having to type

 it repeatedly.")

This introduces another aspect of text strings: If text is too long fit on a

single line, you may enter it on several lines. Multiple white-space

(spaces, tabs, and newlines) gets converted to a single space, so the text

above ends up with just one space between the words on each line. If you

want multiple spaces, enter them as underbars, '_'. These are converted to

spaces in the string, but are not compacted.

To include a '_' in text, type '_', where '\' is the escape character.

Explicit newlines are entered just as in C: '\n'. A CR/LF pair is entered

as '\r' (the '\r' should be used in place of '\n' in all strings destined

for a file). Characters which are not on the keyboard, but are defined in a

font (such as the Sierra symbol in the menubar) can be included in the

string by preceding the two-digit hex value of the character with the '\'.

Thus, "This is the Sierra symbol: \01" would put the value 1 at the end of

the string, and this character in the font is the Sierra symbol.

The maximum length of a text string is 2000 bytes.

Word-strings:

Word-strings are used to represent templates for user input in Said

statements. A word-string is a string enclosed in single quotes which

contains meta-characters describing the content of a sentence. The meta-

characters and their meanings are described in the separate Vocabulary

documentation.

 (if (Said 'give/pirate/gold coins<#' @howMany)

 (Print "Get lost creep.")

)

As with text strings, identical strings are stored only once.

Characters:

Characters are single ASCII characters, and are denoted by preceding the

character with the reverse single quote ("tick") character:

 `A represents uppercase A and

 `? represents the question mark

Several character sequences represent special key combinations:

 `^a represents ctrl-A

 `@b represents alt-B

 `#4 represents the F4 key

Literal selectors:

Sometimes, as in the code

 (cast eachElementDo: #showSelf:)

you want to send the value of selector rather than use the selector as the

start of another message to an object (these terms will be described in

Object Oriented Programming in Script). Preceding the selector with a '#'

produces the literal value of the selector rather than using it as a

message.

 Primitive Procedures

Arithmetic primitives:

In the following, e1, e2, ... are arbitrary expressions.

(+ e1 e2 [e3...])

 Evaluates to e1 + e2 [+ e3 ...]

(* e1 e2 [e3...])

 Evaluates to e1 * e2 [* e3 ...]

(- e1 e2)

 Evaluates to e1 - e2

(/ e1 e2)

 Evaluates to e1 / e2

(mod e1 e2)

 Evaluates to the remainder of e1 when divided by e2.

(<< e1 e2)

 Evaluates to e1 << e2 where the << operation shifts its left hand

 side left by the number of bits specified by its right hand side. (As

 in C).

(>> e1 e2)

 Evaluates to e1 >> e2 as in << except a right shift.

(^ e1 e2 [e3 ...])

 Evaluates to e1 ^ e2 [^ e3 ^ ...] where '^' is the bitwise

 exclusive-or operator.

(& e1 e2 [e3 ...])

 Evaluates to e1 & e2 [& e3 & ...] where '&' is the bitwise and

 operator.

(| e1 e2 [e3])

 Evaluates to e1 | e2 [| e3 | ...] where '|' is the bitwise or

 operator.

(! e1)

 Evaluates to TRUE if e1 == 0, else FALSE.

(~ e1)

 Evaluates to the bit-wise not of e1, i.e. all 1 bits are changed to 0

 and all 0 bits are changed to 1.

Boolean primitives:

These procedures are always guaranteed to evaluate their parameters left to

right and to terminate the moment the truth value of the expression is

determined. If the truth value of the boolean is determined before an

expression is reached, the expression is never evaluated.

(> e1 e2 [e3...])

 Evaluates to TRUE if e1 > e2 [> e3 ...], else FALSE.

(>= e1 e2 [e3...])

 Evaluates to TRUE if e1 >= e2 [>= e3 ...], else FALSE.

(< e1 e2 [e3...])

 Evaluates to TRUE if e1 < e2 [< e3 ...], else FALSE.

(<= e1 e2 [e3...])

 Evaluates to TRUE if e1 <= e2 [<= e3 ...], else FALSE.

(== e1 e2 [e3...])

 Evaluates to TRUE if e1 == e2 [== e3 ...], else FALSE.

(!= e1 e2 [e3...])

 Evaluates to TRUE if e1 != e1 [!= e3 ...], else FALSE.

(and e1 e2 [e3...])

 Evaluates to TRUE if all the expressions are non-zero, else FALSE.

(or e1 e2 [e3...])

 Evaluates to TRUE if any of the expressions are non-zero, else FALSE.

(not e)

 Evaluates to TRUE if the expression is zero, else FALSE.

Assignment primitives:

All assignment procedures store a value in a variable and return that value

as the result of the assignment. In the following, v is a variable and e an

expression.

(= v e)

 v = e

(+= v e)

 v = v + e

(-= v e)

 v = v - e

(*= v e)

 v = v * e

(/= v e)

 v = v / e

(|= v e)

 v = v | e

(&= v e)

 v = v & e

(^= v e)

 v = v ^ e

(>>= v e)

 v = v >> e

(<<= v e)

 v = v << e

(++ v)

 v = v + 1

(-- v)

 v = v - 1

 Control Flow

In the following, code1, ..., codeN are arbitrary sequences of expressions.

There are no BEGIN ... END blocks as in Pascal or progn forms as in Lisp.

The value of a control flow expression is the value of the last expression

in the control body which was evaluated. Thus, if we execute the following

code:

 (= x 3)

 (= y 2)

 (= y (if (> x y)

 (- x y)

 else

 (+ x y)

)

)

y will have the value 1.

Return:

 (return [expression])

The return statement returns control to the procedure which called the

currently executing procedure. If the optional expression is present, that

value is returned as the value of the current procedure. There is an

implicit return at the end of all procedures, and the value returned in that

case is the value of the last expression evaluated. A return from the main

procedure of script 0 returns to the operating system.

Conditionals:

(if expression code1 [else code2])

 If expression is not FALSE, execute code1, else execute code2. (The

 else clause is optional).

(cond (e1 code1) (e2 code2) ... [(else codeN)])

 Evaluate e1. If it is not FALSE, execute code1 and exit the cond

 clause. If it is FALSE, evaluate e2 and continue. If all of the

 expressions are FALSE and the optional else clause is present, execute

 codeN.

(switch expression (exp1 code1) (exp2 code2) ... [(else codeN)])

 Evaluate expression. If it is equal to exp1, execute code1 and exit

 the switch. If it is equal to exp2, execute code2 and exit. If it

 doesn't equal any of the expressions and the optional else clause is

 present, execute codeN.

Iteration:

(for (initialization) condition (re-initialization) code)

 Evaluate the expressions comprising initialization. Then evaluate

 condition. If the result is FALSE, exit the loop. Otherwise, execute

 code, then the expressions comprising re-initialization, and loop back

 to condition.

(while condition code)

 Evaluate condition. If not FALSE, execute code and loop back to

 evaluate condition again. Exit the loop when condition is FALSE.

 (Note that this means that the value of a while condition is always

 FALSE.) This is equivalent to

 (for () condition () code)

(repeat code)

 Continually execute the code until some condition in the code (a

 break) causes the loop to be exited. This is equivalent to

 (while TRUE code)

 or

 (for () TRUE () code)

Supporting constructs for iteration:

(break [n])

 Break out of n levels of loops. If n is not specified break out of the

 innermost loop.

(breakif expression [n])

 If expression is not FALSE, break out of n levels of loops. If n is

 not specified, break out of the innermost loop.

(continue [n])

 Loop back to the beginning of the nth level loop. If n is not

 specified, loop to the beginning of the innermost loop.

(contif expression [n])

 If expression is not FALSE, loop back to the beginning of the nth

 level loop. If n is not specified, loop to the beginning of the

 innermost loop.

 Procedures

Procedures are created with the procedure construct:

 (procedure (proc-name [p1 p2 ...] [&tmp t1 t2...])

 code

)

This defines the procedure with the name proc-name. This procedure takes

parameters p1, p2, ... and allocates temporary variables (which disappear on

exit from the procedure) t1, t2, Note that the procedure may take no

parameters and have no automatic variables. In this case, the definition

would be

 (procedure (proc-name)

 code

)

You can define temporary arrays in the same way as you would local arrays:

 (procedure (proc-name &tmp [array n])

 code

)

Code in these examples is any list of valid expressions.

All procedures have at least one parameter, the compiler defined variable

argc (argument count), which gives the number of parameters passed to the

procedure.

For example, you might define the procedure square, to square a number, as

follows:

 (procedure (square n)

 (* n n)

)

or the procedure max to find the maximum of an arbitrary number of numbers

passed to the procedure:

 (procedure

 (max

 p ;parameters (will be accessed as an array)

 &tmp

 biggest ;temporary variable containing maximum

 i ;index into parameter array

)

 (for ((= i 0) (= biggest 0))

 (< i argc) ;compare to number of parameters passed.

 ((++ i)) ;note that this is a LIST of expressions,

 ;not a single expression.

 (if (> [p i] biggest)

 (= biggest [p i])

)

)

 (return biggest)

)

The call

 (max 3 -4 -9 0 -2 7 12 4 3 5)

will return the value 12.

In order to use a procedure before it has been defined in a source file (for

example making a call to max before the actual definition of max), the

compiler must be told that the procedure's name corresponds to a procedure,

not an object. This is done with another form of the procedure statement:

 (procedure

 procedure-name

 procedure-name

 ...

)

Tells the compiler to compile code for procedure calls when it encounters

procedure-name, rather than code for send messages to an object.

&rest:

Argc, as discussed above, makes it easy to write procedures (or methods,

discussed in Object Oriented Programming in Script) which handle a variable

number of arguments. If a procedure or method has received a variable

number of arguments and wants to pass them on to another procedure or

method, things get messy. The only way to do this given only argc is to

build a switch statement on argc which looks like

 (procedure (foo arg)

 (switch argc

 (0 (mumble))

 (1 (mumble arg))

 (2 (mumble arg [arg 1]))

 (3 (mumble arg [arg 1] [arg 2]))

 ...

)

)

This not only involves a lot of typing and generates a lot of code, it

limits the number of arguments which can be passed to the next function (you

can only type a finite number of clauses in the switch statement).

&rest exists to solve this problem -- it stands for the rest of the

parameters not specified in the procedure or method definition. The above

procedure could then be written simply as

 (procedure (foo)

 (mumble &rest)

)

which is not only easier to type and read but also produces smaller, faster

object code.

A variant of &rest allows you to specify all parameters starting at any

point in a parameter list of a procedure or method definition:

 (procedure (foo arg1 arg2 arg3 arg4)

 (mumble (&rest arg3))

)

passes all arguments starting with arg3 to procedure mumble.

Extern:

Calling a procedure in another script is another matter. Since there is no

link phase in the development cycle, one procedure cannot know the address

of a procedure in a different script. The extern statement allows a script

to know where the external procedure is:

 (extern

 procedure-name script-number entry-number

 ...

)

This says that the procedure referred to by the symbol procedure-name in

this script is to be found in script number script-number at entry number

entry-number in the script's dispatch table. kernel.sh and base.sh both use

the extern statement to let all other scripts know where their public

procedures are.

The dispatch table for a script is defined by the public statement:

Public:

All procedures within a script which are to be accessed from outside the

script must be entered in the dispatch table for the script with the public

statement:

 (public

 procedure-name entry-number

 ...

)

puts the procedure procedure-name in the dispatch table at entry number

entry-number. The entries need not be in numeric order, nor do the numbers

need to be continuous (though if they're not continuous the table will be

larger than it needs to be).

 Using SC

The sc compiler is invoked with the command

 sc file_spec [file_spec] [options]

Any number of file specifications may be entered on the command line, and a

file specification may include wild-card names.

Options are:

-l

 Generate an assembly language code listing for the file. This is

 useful when using the built-in debugger of sci, which lists only the

 assembly language code, not the source. When compiling filename.sc,

 the list file is named filename.sl

-n

 Turns off 'auto-naming' of objects. As described in Script Classes for

 Adventure Games, each object has a name, or 'print-string' property,

 which is how to represent the object textually. Unless the property is

 explicitly set, the compiler will generate the value for this property

 automatically, using the object's symbol string for the name. The

 object names, however, take up space in the heap. While they are

 useful (almost vital) for debugging, if you're running out of heap in a

 room, it might help to compile with the -n option to leave the names

 out.

-oout-dir

 Set the directory for the output file (script.nnn) to out-dir.

-v

 Turns on verbose mode, which prints the number of bytes occupied by

 various parts of the output file (code, objects, text, etc.).

-z

 Turn off optimization. Not a particularly useful option except for

 those of us who must maintain the compiler.

Index

! . 13

!= . 14

+ . 13

++ . 15

+= . 15

- . 13

-- . 15

-= . 15

* . 13

*= . 15

/ . 13

/= . 15

^ . 13

^= . 15

< . 14

<< . 13

<<= . 15

<= . 14

= . 15

== . 14

> . 14

>= . 14

>> . 13

>>= . 15

& . 13

&= . 15

&rest . 20

| . 13

|= . 15

~ . 13

and . 14

arithmetic primitives . 13

array . 9

arrays . 9

assignment primitives . 15

base.sh . 4

boolean primitives . 14

break . 17

breakif . 17

characters . 12

classdef . 4

classtbl . 4

cond . 16

conditionals . 16

contif . 18

continue . 18

define . 6

enum . 6

extern . 21

for . 17

global . 8

if . 16

include . 5

iteration . 17

kernal.sh . 4

local . 8

mod . 13

not . 14

numbers . 8

options . 23

or . 14

pointers . 10

procedure . 19, 20

public . 22

repeat . 17

return . 16

sc . 23

script# . 5

selector . 4

 literal . 12

SINCLUDE . 5

switch . 17

synonyms . 7

text . 10

variables . 8

 global . 8

 local . 8

 temporary . 8, 19

vocab.000 . 4

while . 17

word strings . 11

