[image: image1.emf]
3380 146th Place SE

Bellevue, WA 98007

(425)649-9800

Confidential Document

For Internal Distribution Only

Gabriel Knight 3
Data Usage for Scripting

Author:
Scott Honn

Date:
7/10/1998

Wherein is explained all the diverse and occult mysteries of the Rules and ways of the arcane files with their hidden structures. Compiled by a student of the virtual world and ways…

The data used in the process of writing a script resides in four basic places:

Two are to be modified as needed in the process of constructing scripts

· Sif file, the Scene Initialization File

· Nvc file, the Noun Verb Case file

Two others that are added to by programmers or designers

· Director.txt

· Logic in the game code

Index (Double click any light blue items to go to links)

SIF Files

· GOTOBUTTON SifModel Models
· GOTOBUTTON SifActors Actors
· GOTOBUTTON SifCameras Camera Types
· GOTOBUTTON SifPositions Positions
· GOTOBUTTON SifListener Listeners
· GOTOBUTTON SifRegion Regions
· GOTOBUTTON SifTrigger Triggers
NVC Files

· GOTOBUTTON NvcNVC How Noun Verb and Case work together
· GOTOBUTTON NvcScript Script =
· GOTOBUTTON NvcApproach Approach types and target
· GOTOBUTTON NvcEnter Scene Enter and Scene Exit
· GOTOBUTTON NvcTB Spanning multiple time blocks
· GOTOBUTTON NvcLogic Logic
 GOTOBUTTON DirTxt Director.txt and Dialogue Sets
 GOTOBUTTON CodeLogic Code data

 GOTOBUTTON SifIndex [Models]

Use this section when there is something the player can click on and get a response and any props, clickable or not.

E.g.
model=r25doorknob,noun=HALL_DOOR_LOCK,type=scene

Link model=r25doorknob to game noun=HALL_DOOR_LOCK, this model is a part of the r25.scn file: type=scene.

The game itself looks at Nouns, not models. Anything that the player can click on and get a response is a noun.

There are two main types of models, “scene” and “prop”. A scene model is a part of the scene (exported as a .scn file) while a prop is an individual Max model (exported as a .mod file). Props are typically used in animations.

If the model is not to be clicked on in and of itself it is linked to the actor’s noun

E.g.
model=madmap,noun=BUTHANE,type=prop

If the model is to be clicked on in and of itself it is linked to its own noun

E.g.
model=coffpothand,noun=COFFEE_POT,type=prop

The final variation is an optional default verb. These are most often “inspect” and “exit”. They are used when a noun only ever has a single verb associated with it – this causes the verb’s icon to popup automatically whenever the cursor is over the model.

E.g. model=dinchandilier1,type=scene,verb=INSPECT

 GOTOBUTTON SifIndex [Actors]

Use this section to bring the character models into a scene. Installs their initial gas files and identifies a starting position.

E.g.

model=gab,noun=GABRIEL,pos=GABRIEL_INIT,idle=gabIdle.gas,talk=gabTalk. gas, listen=gabListen.gas, ego

Link model = gab to noun = GABRIEL. Start the scene with the actor at pos(ition) = GABRIEL_INIT. The initial three GAS files to start with are then assigned: the idle, talk and listen. Gabriel or Grace will have the extra indicator on the end of the line that they are the ego for this scene. Whomever is indicated as ego will be the walker controlled by the player clicking on the floor.

See GOTOBUTTON SifModels [Models] and GOTOBUTTON SifPosition [Positions] .

GAS Files are used to control what actors are doing outside when they are not running specific animations involved with Noun, Verb responses. When an actor is engaged in a conversation they will automatically alternate between their listen and talk gas files. When an actor is not involved in anything they will be running their idle gas file.

See GOTOBUTTON SifListeners [Listeners] .

 GOTOBUTTON SifIndex [Positions]

Create a position when a model needs to move somewhere other than its starting location or the position of the first frame of an animation.

E.g.
TO_MOP,pos={2792.10,4.00,-2457.00},heading=-132.98

Link a position label, TO_MOP, to an x,y,z coordinate with a rotational heading. If all that is needed is to cause a rotation leave out the x,y,z and just give a heading.

Optionally a camera can be specified. If so it will be used when the position is applied to the character.

E.g.
FR_MOP,pos={2858.10,0.31,-2421.21},heading=63.93,camera=FR_MOP

 GOTOBUTTON SifIndex [Camera Types]

Use to link a noun or a label to a set of camera attributes.

The attributes that create a camera are its position (x,y,z) and it horizontal and vertical angles. The most recent addition is the ability to specify the FOV (Field Of View).

E.g.
GABEBUTH1,angle={74.61,14.28},pos={2712.86,66.76,-1587.04}

There are four types of cameras, each serving a distinct game function:

1. Room Cameras – the first four of these become the four cameras on the toolbar. One can have an optional “default” to make it the default camera used when entering a scene.

GABEBUTH1,angle={74.61,14.28},pos={2712.86,66.76,-1587.04},default

2. Inspect Cameras – the default cameras to use when the inspect verb
is used on an object. This is the only camera type not given a label. It is instead linked to either a Noun or model name.

noun=HALL_DOOR_LOCK,angle={4.50,0.00},pos={107.93,274.89,42.00}

3. Cinematic Cameras – use these cameras for scripting. They don’t appear on the toolbar.

4. Dialogue Cameras – use these for scripting dialogue scenes. They may appear on the toolbar during their dialogue. Here are the CU and OTS and Framing shots. (CU = close up, OTS = Over The Shoulder, See Shot by Shot by Steven Katz). See also GOTOBUTTON DirTxt Director.txt .

JEAN_CU,angle={-242.5,13.5}, pos={341,82,293}, dialogue=GABEJEAN, set=JEAN, show, fov=20

There are additional parameters to support maximum flexibility;

“Set” indicates the set of cameras to which the dialog belongs. See also GOTOBUTTON DlgSets Dialogue Sets .

“Show” will put the camera on the toolbar.

“Final” on the line will cause the camera to be used as the final one in the conversation sequence.

 GOTOBUTTON SifIndex [Listeners]

1. Use this section to identify all non-ego participants in a conversation.

The information supplied here is how we know to switch between the talk and listen GAS files. If GAS files are specified they will replace the GOTOBUTTON SifActors Actors current files, if they are not they will use the ones they have.

E.g. with replacing GAS files:

Dialogue=GABEEMIL,actor=EMILIO,talk=EmlTalk.gas,listen=EmlListen.gas

E.g. without replacing GAS files:

Dialogue=GABEEMIL,actor=EMILIO

For Dialogue = See GOTOBUTTON DlgSets Dialogue Sets .

2. Use this section if a special animation needs to be played before a conversation begins and when a conversation completes.

The most common example is when ego converses with someone who is seated. This requires playing an animation that tilts ego’s head down at the start and then back up at the end. In this case ego IS also listed in the listeners section. It is also likely that new GAS files are required that consist of fidget animations all built with the head in a lowered position.

E.g.

Dialogue=GABEEMIL,actor=GABRIEL,talk=GabTalkDown.gas,listen=GabListenDown.gas, enter = GabHeaddown, leave = GabHeadUp

 GOTOBUTTON SifIndex [Regions]

Use regions if a script needs to ask “Is Actor X in rectangle Y ?”

A region is a large, rectangular position. The rectangle format is x1, z1, x2, z2.

 X1, Z1 Corner

X2, Z2 Corner

E.g.
NEAR_BOOKSTORE, rect = {3110, -1315, 3095, -1522}

 GOTOBUTTON SifIndex [Triggers]

Use triggers if a NVC action needs to occur when ego enters a particular rectangular area.

E.g.
Noun = FRONT_DESK, rect = {324,204,378,302}

See GOTOBUTTON SifRegion Regions for format of the rectangle.

 GOTOBUTTON NvcIndex NVC Files

The NVC Files link together a noun, a verb and a case to fire off a Sheep script or command. When the Sheep is running the game is in a “hands off” mode to insure that we never have two player invoked actions running at once.

E.g. BED, LOOK, GABE_ALL, script ={wait StartDialogue ("1LQ7Y44QR1");}

 GOTOBUTTON NvcIndex How Nouns, Verbs and Cases work together

A Noun represents the object in the world that has some possible interaction associated with it. The cursor highlights over the objects made Nouns. When the cursor is highlighted a mouse click brings up a set of icons that represent the various actions that the player can invoke on that object. These actions are the Verbs. The Case is the overall game context. It is in the Case that the logic of the game’s behavior is laid out. See GOTOBUTTON NvcLogic Logic .
 GOTOBUTTON NvcIndex Script =

A player clicking the Verb icon and the game checking the Case logic causes a Sheep script or a Sheep command to execute. In the example it is calling the Sheep command “StartDialogue” and sending it the dialogue number to play.

 GOTOBUTTON NvcIndex Approach types and target

Before the indicated script is begun the ego will be walked to the proper position for that action, if necessary. While the ego is in this approach the player is still free to cancel out of the action or re-direct the ego’s walk.

 GOTOBUTTON NvcIndex Scene Enter and Scene Exit

These are special cases that are always run. Their case logic controls how a scene is set up and cleaned up.

 GOTOBUTTON NvcIndex Spanning multiple time blocks

The Nvc files are arranged according to the ME data. In particular we have a file for every combination of time blocks. This means that, for example, when the game is running the Hotel Lobby location for Day 1, 10am we have loaded the following Nvc files:

Lby110a
, Lby1_all
, Lby12_all
, Lby110a02p
, and Lby110a12p
.

 GOTOBUTTON NvcIndex [Logic]

The logic behind the Case is evaluated in this section of the Nvc files. The logic is very much like C++ code and is often dependent on GOTOBUTTON CodeData Code Data . Each special Case has a corresponding logic entry. There is default handling for a number of common Cases such as 1st_Time, Gabe_All etc. (So it is not necessarily a mistake if there doesn’t seem to be a logic entry for a given Case).

Nvc entry:

WALL_NEAR_DINING_ROOM, WALK, MET_TWO_MEN_NOT_SPIED_WB, …

Its corresponding [Logic] entry:

MET_TWO_MEN_NOT_SPIED_WB={GetFlag("MetTwoMen") && (!GetFlag("SpiedWilkesBuch"))}

 GOTOBUTTON

 GOTOBUTTON DirIndex Director.txt

This is used in the creation of dialogue .anm files. The designer arranges the data.

What everyone needs to know is the way it behaves:

 It is possible to have the dialogue .anm file cause the camera to switch or a gesture animation to play. If you are scripting a Sheep and see one of these two things occur but the script doesn’t contain statements to cause them it is because of the dialogue .anm file itself !

Whenever these occur a message is written to the console.

Dialogue Sets (See Dialogue Cameras in GOTOBUTTON SifCameras Camera types and GOTOBUTTON SifListener [Listeners])

Reprinted from the Sif.doc:

“Specifies the set of cameras to which the camera belongs. In the director file, a line of dialog may specify from which set to choose a camera angle.

For example, most of Gabe’s lines will use the set labeled GABRIEL. When the game plays one of these lines, it will check the list of active DIALOGUE_CAMERAS and randomly choose one from the GABRIEL set.”

The game’s dialogue state is started with the Sheep command SetConversation(conversation-label). After this statement the dialog cameras are added to the toolbar. The conversation-label is the same label given in the Dialogue Cameras section of the Sif file. (This command also prepares participants listed in the GOTOBUTTON SifListener [Listeners] section of the Sif file by starting their listen GAS files).

Technically – if someone is not listed in the [Listeners] section they will start their listen fidget the first time they are listening after they have once been the speaker.

Code Data

The logic tracking data lives in the game code. It is exposed for use, and manipulated by Sheep scripts. The Nvc files GOTOBUTTON NvcLogic [Logic] section also uses it. The most common example of such data is a flag such as fSeenMaid.

There are a handful of data structures in the code that answer a large percentage of the needs of our game. These eliminated the necessity of having a large number of flags. See Sheep documentation for details. These include:

1. Topic Count – whenever the player enters a conversation the topic count of that conversation is automatically incremented.

Sheep support: GetTopicCount

2. Noun Verb Count – whenever required any noun – verb combination can be given a count.

Sheep support: GetNounVerbCount, SetNounVerbCount, IncNounVerbCount.

3. Inventory States – every potential inventory item is tracked throughout the game by giving it a particular state:

· KInvNotPlaced – the item has not yet appeared anywhere in the game

· KInvPlaced – the item is now in a scene within the game

· KInvGraceHas – the item is in Grace’s current inventory

· kInvGabeHas – the item is in Gabe’s current inventory

· kInvGaceHas – the item is in Gabe and Grace’s current inventory

· kInvUsed – the item has been used up, it is out of the game for good.

Sheep support: DoesEgoHaveItem, DoesGabeHaveItem, DoesGraceHaveItem, SetInvItemstatus, EgoTakeInvItem.

4. Non-player character locations

This provides a way to know the current location of any character when it is needed.

Sheep support:

IsActorAtLocation(location) – sent a proper location

IsActorOffstage – offstage is anywhere, current location doesn’t matter

SetActorLocation(location) – keeps current location accurate

5. Location time Block Count

Tracks how many times the current ego has been to a particular location.

Sheep support:

GetEgoLocationCount – how many times in the current time block

WasEgoEverInLocation – any time since game start

6. Score

Sheep support:

GetScore

IncreaseScore

7. Variables

These are variables capable of carrying an integer value. They will prove useful in a number of situations where a specific flag would be overkill.

Sheep support:

SetGameVariableInt

GetGameVariableInt

IncGameVariableInt

�PAGE \# "'Page: '#'�'" �� The magnifying glass on the verb chooser. When used the camera will change to show a close up of the item that was chosen.

�PAGE \# "'Page: '#'�'" �� Lobby Day 1, 10am

�PAGE \# "'Page: '#'�'" �� Lobby Day 1

�PAGE \# "'Page: '#'�'" �� Lobby Day 1 and Day 2

�PAGE \# "'Page: '#'�'" �� Lobby Day 1, 10am through 2 pm

�PAGE \# "'Page: '#'�'" �� Lobby Day 1, 10am through 12pm

